4.給定y與x的一組樣本數(shù)據(jù),求得相關(guān)系數(shù)r=-0.990,則( 。
A.y與x負(fù)線性相關(guān)B.y與x正線性相關(guān)
C.y與x的線性相關(guān)性很強(qiáng)D.y與x的相關(guān)性很強(qiáng)

分析 根據(jù)題意,由相關(guān)關(guān)系的定義,分析可得答案.

解答 解:∵相關(guān)系數(shù)的絕對(duì)值越大,越具有強(qiáng)大相關(guān)性,
相關(guān)系數(shù)r=-0.990,相關(guān)系數(shù)的絕對(duì)值約接近1,
相關(guān)關(guān)系較強(qiáng).
故選:C.

點(diǎn)評(píng) 本題考查相關(guān)系數(shù)與相關(guān)關(guān)系強(qiáng)弱的關(guān)系,相關(guān)系數(shù)的絕對(duì)值越接近于1,越具有強(qiáng)大相關(guān)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出x的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.研究cosnα的公式,可以得到以下結(jié)論:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此類推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
則m+n+p+q+r=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了得到函數(shù)y=$\sqrt{3}$sin3x+cos3x的圖象,可以將函數(shù)y=2sin3x的圖象(  )
A.向右平移$\frac{π}{6}$個(gè)單位B.向左平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{18}$個(gè)單位D.向左平移$\frac{π}{18}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若不等式ax2-bx+c>0的解集為{x|-2<x<3},求不等式cx2-bx-a<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.與直線x-2y+6=0平行且過點(diǎn)(0,-1)的直線方程為( 。
A.2x+y+1=0B.x+2y+2=0C.x-2y-2=0D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$,那么z=y-x的最大值是(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)△ABC的角A,B,C所對(duì)的邊分別是a,b,c,若A=60°,B=75°,c=8,則a=(  )
A.$4\sqrt{7}$B.$4\sqrt{6}$C.$4\sqrt{5}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知銳角三角形ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若sinA=$\frac{{\sqrt{7}}}{4}$,sinC=$\frac{{3\sqrt{7}}}{8}$
(1)求sinB的值;
(2)若|${\overrightarrow{AC}$+$\overrightarrow{BC}}$|=2$\sqrt{23}$,求BC邊上的中線的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案