已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)P(4,-).

(1)求雙曲線的方程.

(2)若點(diǎn)M(3,m)在雙曲線上,求證:·=0.

(3)求△F1MF2的面積.

 

(1) x2-y2=6 (2)見解析 (3)6

【解析】(1)e=,

∴可設(shè)雙曲線方程為x2-y2=λ(λ≠0).

∵過點(diǎn)P(4,-),16-10=λ,即λ=6.

∴雙曲線方程為x2-y2=6.

(2)方法一:(1)可知,雙曲線中a=b=,

c=2,F1(-2,0),F2(2,0).

=,=,

·==-.

∵點(diǎn)M(3,m)在雙曲線上,

9-m2=6,m2=3.

·=-1,MF1MF2.

·=0.

方法二:=(-3-2,-m),

=(2-3,-m),

·=(3+2)×(3-2)+m2=-3+m2.

M(3,m)在雙曲線上,

9-m2=6,m2-3=0.

·=0.

(3)F1MF2的底|F1F2|=4,

F1MF2的邊F1F2上的高h=|m|=,

=6.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集為M.

(1)M.

(2)當(dāng)a,bM時(shí),證明:2|a+b|<|4+ab|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:解答題

如圖,橢圓C:+=1的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為A1,A,上頂點(diǎn)為B,拋物線C1,C2分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1C2相交于直線y=x上一點(diǎn)P.

(1)求橢圓C及拋物線C1,C2的方程.

(2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M,N,已知點(diǎn)Q(-,0),·的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)直線l:2x+y-2=0與橢圓x2+=1的交點(diǎn)為A,B,點(diǎn)P是橢圓上的動(dòng)點(diǎn),則使得△PAB的面積為的點(diǎn)P的個(gè)數(shù)為   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對(duì)稱的相異兩點(diǎn)A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

已知雙曲線-=1(a>0,b>0)的一條漸近線方程為y=x,則雙曲線的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:解答題

如圖,

在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線ACBD互相垂直,ACBD分別在x軸和y軸上.

(1)求證:F<0.

(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,·=0,D2+E2-4F的值.

(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OHAB且垂足為H.試用平面解析幾何的研究方法判斷點(diǎn)O,G,H是否共線,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題

給定橢圓C:+=1(a>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為.

(1)求橢圓C的方程和其“準(zhǔn)圓”的方程.

(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1,l2使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.

①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),l1,l2的方程;

②求證:|MN|為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點(diǎn)P的軌跡方程為(  )

(A)x2+y2=2 (B)x2+y2=4

(C)x2+y2=2(x≠±2) (D)x2+y2=4(x≠±2)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案