如圖,
在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點O,G,H是否共線,并說明理由.
(1)見解析 (2)64 (3) O,G,H三點必定共線,理由見解析
【解析】(1)方法一:由題意,原點O必定在圓M內(nèi),即點(0,0)代入方程x2+y2+Dx+Ey+F=0的左邊所得的值小于0,于是有F<0,即證.
方法二:由題意,不難發(fā)現(xiàn)A,C兩點分別在x軸正、負半軸上.設兩點坐標分別為A(a,0),C(c,0),則有ac<0.對于圓的方程x2+y2+Dx+Ey+F=0,當y=0時,可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標,于是有xAxC=ac=F.
因為ac<0,故F<0.
(2)不難發(fā)現(xiàn),對角線互相垂直的四邊形ABCD的面積S=,因為S=8,|AC|=2,可得|BD|=8.
又因為·=0,所以∠BAD為直角,又因為四邊形是圓M的內(nèi)接四邊形,故|BD|=2r=8⇒r=4.
對于方程x2+y2+Dx+Ey+F=0所表示的圓,
可知+-F=r2,所以D2+E2-4F=4r2=64.
(3)設四邊形四個頂點的坐標分別為A(a,0),B(0,b),C(c,0),D(0,d).
則可得點G的坐標為(,),即=(,).
又=(-a,b),且AB⊥OH,故要使G,O,H三點共線,只需證·=0即可.
而·=,且對于圓M的一般方程x2+y2+Dx+Ey+F=0,
當y=0時可得x2+Dx+F=0,其中方程的兩根分別為點A和點C的橫坐標,
于是有xAxC=ac=F.
同理,當x=0時,可得y2+Ey+F=0,其中方程的兩根分別為點B和點D的縱坐標,于是有yByD=bd=F.
所以·==0,即AB⊥OG.
故O,G,H三點必定共線.
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)八十一選修4-5第三節(jié)練習卷(解析版) 題型:解答題
已知實數(shù)a,b,c滿足a+b+c=2,求a2+2b2+c2的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十六第八章第七節(jié)練習卷(解析版) 題型:選擇題
設拋物線y2=8x上一點P到y軸的距離是4,則點P到該拋物線焦點的距離是( )
(A)4 (B)6 (C)8 (D)12
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:解答題
已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點P(4,-).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十五第八章第六節(jié)練習卷(解析版) 題型:選擇題
雙曲線-=1(a>0,b>0)的離心率為2,則的最小值為( )
(A) (B) (C)2 (D)1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:填空題
圓C:x2+y2+2x-2y-2=0的圓心到直線3x+4y+14=0的距離是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十二第八章第三節(jié)練習卷(解析版) 題型:選擇題
若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點均在第二象限內(nèi),則a的取值范圍為( )
(A)(-∞,-2) (B)(-∞,-1)
(C)(1,+∞) (D)(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十三第八章第四節(jié)練習卷(解析版) 題型:解答題
已知☉O:x2+y2=1和定點A(2,1),由☉O外一點P(a,b)向☉O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點,試求半徑取最小值時☉P的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)五十一第八章第二節(jié)練習卷(解析版) 題型:選擇題
點A(1,1)到直線xcosθ+ysinθ-2=0的距離的最大值是( )
(A)2 (B)2-
(C)2+ (D)4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com