13.已知等差數(shù)列{an}滿足:a5=9,a1+a7=14,則數(shù)列{an}的通項公式為an=2n-1.

分析 由等差數(shù)列的性質(zhì)可得a1+a7=2a4.即a4=7,則d=a5-a4=2,由等差數(shù)列的通項公式an=a5+2(n-5),即可求得數(shù)列{an}的通項公式.

解答 解:由等差數(shù)列的性質(zhì)可得a1+a7=2a4
∴a4=7,
∴d=a5-a4=2,
∴等差數(shù)列的通項公式an=a5+2(n-5)=2n-1,
∴數(shù)列{an}的通項公式an=2n-1

點評 本題考查等差數(shù)列性質(zhì),考查計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=2ax-asinx+cosx在(-∞,+∞)內(nèi)單調(diào)遞減,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{\sqrt{3}}{3}$)B.(-∞,$\frac{\sqrt{3}}{3}$]C.(-∞,-$\frac{\sqrt{3}}{3}$)D.(-∞,-$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在下列拋物線中,其準線與(x-1)2+(y-2)2=9圓相切的是( 。
A.x2=-8yB.y2=-8xC.y2=16xD.x2=4y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.微信是騰訊公司推出的一種手機通訊軟件,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結果如下:
A組B組合計
男性262450
女性302050
合計5644100
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“A組”用戶與“性別”有關?
(Ⅱ)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);(Ⅲ)從(Ⅱ)中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中在“A組”的人數(shù)為X,試求X的分布列與數(shù)學期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設函數(shù)f(x)=sin(2x+$\frac{π}{6}$),要得到g(x)=sin(2x+$\frac{2π}{3}$)的圖象,可將f(x)的圖象(  )
A.向左平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{2}$個單位D.向右平移$\frac{π}{2}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=4-t}\end{array}\right.$(t為參數(shù)),在以O為極點x軸的非負半軸為極軸建立的極坐標系中,曲線C的極坐標方程為ρ=2.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若點Q是曲線C上的動點,求點Q到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐A-BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中點,求證:EF∥平面ABC;
(2)若AD=DE,求BE與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.命題“?x∈N,x2>1”的否定為?x0∈N,x02≤1.

查看答案和解析>>

同步練習冊答案