【題目】某校教學(xué)大樓共有5層,每層均有2個(gè)樓梯,則由一樓至五樓的不同走法共有( )
A. 24種 B. 52種 C. 10種 D. 7種
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用斜二測畫法畫水平放置的平面圖形的直觀圖,得到下列結(jié)論,其中正確的是( )
A.正三角形的直觀圖仍然是正三角形
B.平行四邊形的直觀圖一定是平行四邊形
C.正方形的直觀圖是正方形
D.圓的直觀圖是圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用樣本估計(jì)總體,下列說法正確的是( )
A、樣本的結(jié)果就是總體的結(jié)果
B、樣本容量越大,估計(jì)就越精確
C、樣本的標(biāo)準(zhǔn)差可以近似地反映總體的平均狀態(tài)
D、數(shù)據(jù)的方差越大,說明數(shù)據(jù)越穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗(yàn),試驗(yàn)設(shè)計(jì)每天接種一次,連續(xù)接種3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).
(1)若出現(xiàn)癥狀即停止試驗(yàn),求試驗(yàn)至多持續(xù)一個(gè)接種周期的概率;
(2)若在一個(gè)接種周期內(nèi)出現(xiàn)2次貨3次癥狀,則這個(gè)接種周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)3個(gè)周期,設(shè)接種試驗(yàn)持續(xù)的接種周期數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程是y=2x+3,則l關(guān)于y=-x對稱的直線方程是( )
A. x-2y+3=0 B. x-2y=0
C. x-2y-3=0 D. 2x-y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列不具有相關(guān)關(guān)系的是( )
A. 單產(chǎn)不為常數(shù)時(shí),土地面積和總產(chǎn)量
B. 人的身高與體重
C. 季節(jié)與學(xué)生的學(xué)習(xí)成績
D. 學(xué)生的學(xué)習(xí)態(tài)度與學(xué)習(xí)成績
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=( )
A. {1,-3} B. {1,0}
C. {1,3} D. {1,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)的極小值為,求實(shí)數(shù)的值;
(3)若對任意的,不等式恒成立, 則實(shí)數(shù)的取值范
圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com