拋物線頂點(diǎn)為,焦點(diǎn)為,是拋物線上的動點(diǎn),則的最大值為            .

;

解析:設(shè)拋物線方程為,則頂點(diǎn)及焦點(diǎn)坐標(biāo)為,若設(shè)點(diǎn)坐標(biāo)為,則

.(當(dāng)時取等號)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點(diǎn)為一個焦點(diǎn),且橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點(diǎn)P(m,n)(mn≠0)是橢圓C1上的任一點(diǎn),若點(diǎn)Q是直線y=nx與拋物線x2=
1
mn
y
異于原點(diǎn)的交點(diǎn),證明點(diǎn)Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線頂點(diǎn)為,焦點(diǎn)為,是拋物線上的動點(diǎn),則的最大值為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題

某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個點(diǎn),度量點(diǎn)的坐標(biāo),如圖.

(Ⅰ)拖動點(diǎn),發(fā)現(xiàn)當(dāng)時,,試求拋物線的方程;

(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn),構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線.經(jīng)觀察得:沿著拋物線,無論怎樣拖動點(diǎn),恒有.請你證明這一結(jié)論.

(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請寫出相應(yīng)的正確命題;否則,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省汕頭市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

 若拋物線頂點(diǎn)為,對稱軸為軸,焦點(diǎn)在上,則拋物線的方程為(    )

A.       B.      C.        D.

 

查看答案和解析>>

同步練習(xí)冊答案