已知函數(shù)(是不為零的實(shí)數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)若曲線(xiàn)與有公共點(diǎn),且在它們的某一公共點(diǎn)處有共同的切線(xiàn),求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時(shí)k的取值范圍.
(1).
(2)當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞減.
【解析】
試題分析:(1)設(shè)曲線(xiàn)與有共同切線(xiàn)的公共點(diǎn)為,
則. 1分
又曲線(xiàn)與在點(diǎn)處有共同切線(xiàn),
且,, 2分
∴, 3分
解得 . 4分
(2)由得函數(shù),
所以 5分
. 6分
又由區(qū)間知,,解得,或. 7分
①當(dāng)時(shí),由,得,即函數(shù)的單調(diào)減區(qū)間為, 8分
要使得函數(shù)在區(qū)間內(nèi)單調(diào)遞減,
則有 9分
解得. 10分
②當(dāng)時(shí),由,得,或,即函數(shù)的單調(diào)減區(qū)間為和, 11分
要使得函數(shù)在區(qū)間內(nèi)單調(diào)遞減,
則有,或, 12分
這兩個(gè)不等式組均無(wú)解. 13分
綜上,當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞減. 14分
考點(diǎn):導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極(最值)值。
點(diǎn)評(píng):難題,本題屬于導(dǎo)數(shù)內(nèi)容中的基本問(wèn)題,(1)運(yùn)用“函數(shù)在某點(diǎn)的切線(xiàn)斜率,就是該點(diǎn)的導(dǎo)數(shù)值”,確定直線(xiàn)的斜率。通過(guò)研究導(dǎo)數(shù)值的正負(fù)情況,明確函數(shù)的單調(diào)區(qū)間。確定函數(shù)的最值,往往遵循“求導(dǎo)數(shù),求駐點(diǎn),計(jì)算極值、端點(diǎn)函數(shù)值,比較大小確定最值”。本題較難,主要是涉及參數(shù)K的分類(lèi)討論,不易把握。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省東莞市高二(下)期末數(shù)學(xué)試卷A(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com