5.若關(guān)于x的不等式(m+1)x2-mx+m-1<0的解集為∅,則m的取值范圍為[$\frac{2\sqrt{3}}{3}$,+∞).

分析 根據(jù)題意,問題等價(jià)于$\left\{\begin{array}{l}{m+1>0}\\{△≤0}\end{array}\right.$,求不等式組的解集即可.

解答 解:關(guān)于x的不等式(m+1)x2-mx+m-1<0的解集為∅,
∴$\left\{\begin{array}{l}{m+1>0}\\{△≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{m>-1}\\{{m}^{2}-4(m+1)(m-1)≤0}\end{array}\right.$,
解得m≥$\frac{2\sqrt{3}}{3}$;
∴m的取值范圍是[$\frac{2}{3}$$\sqrt{3}$,+∞).
故答案為:[$\frac{2\sqrt{3}}{3}$,+∞).

點(diǎn)評 本題考查了不等式的解集為空間的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知如表格所示數(shù)據(jù)的回歸直線方程為$\widehat{y}=3.8x+a$,則a的值為240.
 2 5 6
 y252  255 258263  267

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x0∈R,x${\;}_{0}^{2}$+1>0,則¬p為( 。
A.?x∈R,x2+1≤0B.?x∈R,x2+1<0C.?x∈R,x2+1<0D.?x∈R,x2+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB+bcosA=$\frac{a+b}{2}$,則C的最大值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=xk(k為常數(shù),k∈Q),在下列函數(shù)圖象中,不是函數(shù)y=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l過點(diǎn)P(2,-1),且與直線2x+y-l=0互相垂直,則直線l的方程為( 。
A.x-2y=0B.x-2y-4=0C.2x+y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(2$\sqrt{3}$sin$\frac{1}{2}$x-cos$\frac{1}{2}$x)cos$\frac{1}{2}$x+sin2$\frac{1}{2}$x.
(1)求函數(shù)f(x)的值域;
(2)△ABC中,角A,B,C的對邊分別為a,b,c,f(B)=2,b=$\sqrt{3}$,△ABC面積S=$\frac{\sqrt{3}}{4}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.閱讀如圖所示的程序框圖,程序結(jié)束時(shí),輸出S的值為( 。
A.6B.21C.58D.141

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.《九章算術(shù)》是我國古代數(shù)學(xué)名著,匯集古人智慧,其中的“更相減損術(shù)”更是有著深刻的應(yīng)用.如圖所示程序框圖的算法思想即來源于此,若輸入的a=2016,輸出的a=21,則輸入的b可能為(  )
A.288B.294C.378D.399

查看答案和解析>>

同步練習(xí)冊答案