16.已知命題p:?x0∈R,x${\;}_{0}^{2}$+1>0,則¬p為( 。
A.?x∈R,x2+1≤0B.?x∈R,x2+1<0C.?x∈R,x2+1<0D.?x∈R,x2+1≤0

分析 利用特稱命題的否定是全稱命題寫出結果即可.

解答 解:因為特稱命題的否定是全稱命題,所以命題p:?x0∈R,x${\;}_{0}^{2}$+1>0,則¬p為:?x∈R,x2+1≤0.
故選:D.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{a-1}{x}-2a,g(x)=-ax-1$,a>0.
(1)設h(x)=f(x)-g(x),若函數(shù)h(x)在$({0,\frac{1}{2}})$上是減函數(shù),求實數(shù)a的取值范圍;
(2)若f(x)≥g(x)+lnx在[1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.1 624與899的最大公約數(shù)是29.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)$f(x)=\left\{{\begin{array}{l}{a(x-1)+1,x<-1}\\{{a^{-x}},x≥-1}\end{array},(a>0}\right.$,且(a≠1)是R上的單調函數(shù),則實數(shù)a的取值范圍( 。
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0且a≠1)
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并加以證明;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定義在R上的可導函數(shù)f(x)的導函數(shù)f′(x),滿足f′(x)<f(x),且f(x+2)=f(x-2),f(4)=1,則不等式f(x)<ex的解集為( 。
A.(0,+∞)B.(1,+∞)C.(4,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)中,奇函數(shù)是(  )
A.f(x)=sin|x|B.f(x)=xsinxC.y=($\sqrt{x}$)2D.y=2x-2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若關于x的不等式(m+1)x2-mx+m-1<0的解集為∅,則m的取值范圍為[$\frac{2\sqrt{3}}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1
(1)x∈[0,$\frac{π}{2}$]求函數(shù)f(x)的值域.
(2)求方程f(x)=k,(0$≤k<\sqrt{2}$),在[-$\frac{π}{8}$,$\frac{15π}{8}$]內的所有實數(shù)根之和.

查看答案和解析>>

同步練習冊答案