【題目】給出以下四個(gè)說法:

①殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小

②在刻畫回歸模型的擬合效果時(shí),相關(guān)指數(shù)的值越大,說明擬合的效果越好;

③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位;

④對(duì)分類變量,若它們的隨機(jī)變量的觀測(cè)值越小,則判斷“有關(guān)系”的把握程度越大.

其中正確的說法是

A. ①④B. ②④C. ①③D. ②③

【答案】D

【解析】

根據(jù)殘差點(diǎn)分布和相關(guān)指數(shù)的關(guān)系判斷①是否正確,根據(jù)相關(guān)指數(shù)判斷②是否正確,根據(jù)回歸直線的知識(shí)判斷③是否正確,根據(jù)聯(lián)表獨(dú)立性檢驗(yàn)的知識(shí)判斷④是否正確.

殘差點(diǎn)分布寬度越窄,相關(guān)指數(shù)越大,故①錯(cuò)誤.相關(guān)指數(shù)越大,擬合效果越好,故②正確.回歸直線方程斜率為故解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位,即③正確.越大,有把握程度越大,故④錯(cuò)誤.故正確的是②③,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紅隊(duì)隊(duì)員甲、乙、丙與藍(lán)隊(duì)隊(duì)員,進(jìn)行圍棋比賽,甲對(duì),乙對(duì),丙對(duì)各一盤.已知甲勝、乙勝、丙勝的概率分別為0.60.5,0.5,假設(shè)各盤比賽結(jié)果相互獨(dú)立,則紅隊(duì)至少兩名隊(duì)員獲勝的概率是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線上.

(1)求圓的方程;

(2)已知過點(diǎn)的直線與圓相交截得的弦長(zhǎng)為,求直線的方程;

(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口的水深(米)是時(shí)間,單位:小時(shí))的函數(shù),下面是每天時(shí)間與水深的關(guān)系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

經(jīng)過長(zhǎng)期觀測(cè), 可近似的看成是函數(shù)

1)根據(jù)以上數(shù)據(jù),求出的解析式

2)若船舶航行時(shí),水深至少要11.5米才是安全的,那么船舶在一天中幾個(gè)小時(shí)可以安全的進(jìn)出該港?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.

1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O與直線相切.

1)求圓O的方程;

2)若過點(diǎn)的直線l被圓O所截得的弦長(zhǎng)為4,求直線l的方程;

3)若過點(diǎn)作兩條斜率分別為,的直線交圓OB、C兩點(diǎn),且,求證:直線BC恒過定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案