分析 (1)通過2n=1024可得n=10,化簡(jiǎn)Tr+1=(-1)r${C}_{10}^{r}$${x}^{5-\frac{r}{6}}$(r=0,1,2,…,10),進(jìn)而可得r=0,6,計(jì)算即得結(jié)論;
(2)利用${C}_{n}^{r-1}$=${C}_{n+1}^{r}$-${C}_{n}^{r}$,并項(xiàng)相加即得結(jié)論.
解答 解:(1)依題意得,由二項(xiàng)式系數(shù)和2n=1024,解得n=10.
Tr+1=${C}_{10}^{r}(\sqrt{x})^{10-r}(-\root{3}{x})^{r}$=(-1)r${C}_{10}^{r}$${x}^{5-\frac{r}{6}}$(r=0,1,2,…,10),
∵$5-\frac{r}{6}$∈Z,∴r=0,6,
∴有理項(xiàng)為T1=${C}_{10}^{0}{x}^{5}$=x5,T7=${C}_{10}^{6}$x4=210x4;
(2)x2項(xiàng)的系數(shù)為:${C}_{6}^{2}$+${C}_{7}^{2}$+…+${C}_{10}^{2}$,
∵${C}_{n}^{r}$+${C}_{n}^{r-1}$=${C}_{n+1}^{r}$,∴${C}_{n}^{r-1}$=${C}_{n+1}^{r}$-${C}_{n}^{r}$,
∴${C}_{6}^{2}$=${C}_{7}^{3}$-${C}_{6}^{3}$,${C}_{7}^{2}$=${C}_{8}^{3}$-${C}_{7}^{3}$,…,${C}_{10}^{2}$=${C}_{11}^{3}$-${C}_{10}^{3}$,
相加得:${C}_{6}^{2}$+${C}_{7}^{2}$+…+${C}_{10}^{2}$=${C}_{11}^{3}$-${C}_{6}^{3}$=145,
∴x2項(xiàng)的系數(shù)為145.
點(diǎn)評(píng) 本題考查二項(xiàng)式定理等有關(guān)問題,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x±3y=0 | B. | 3x±4y=0 | C. | 3x±5y=0 | D. | 5x±3y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{24}$ | B. | -$\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x≤3} | B. | {x|-2≤x≤3} | C. | {x|x<-2或x>3} | D. | {x|-2<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要的條件 | B. | 必要不充分的條件 | ||
C. | 充要條件 | D. | 既不充分也不必要的條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com