A. | B. | C. | D. |
分析 由題目條件可知△EFG是等邊三角形,由余弦定理求出EG,代入等邊三角形面積公式可求出y關(guān)于x的函數(shù)解析式,從而判斷出圖象.
解答 解:∵AE=BF=CG,△ABC是等邊三角形,
∴∴BE=CF=AG=2-x,∠A=∠B=∠C=60°,
∴△AEG≌△BFE≌△CGF,
∴EG=EF=FG=$\sqrt{{x}^{2}+(2-x)^{2}-2x(2-x)cos60°}$=$\sqrt{3{x}^{2}-6x+4}$.
∴y=$\frac{\sqrt{3}}{4}$•EG2=$\frac{\sqrt{3}}{4}$(3x2-6x+4).
故y的函數(shù)圖象是開(kāi)口向上的拋物線(xiàn),
故選D.
點(diǎn)評(píng) 本題考查了函數(shù)圖象的判斷,求出y關(guān)于x的解析式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>1,b>1 | B. | a>1,0<b<1 | C. | 0<a<1,b>1 | D. | 0<a<1,0<b<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f_a^b(f(x)-g(x))dx$ | B. | $f_a^b(g(x)-f(x))dx$ | C. | $f_a^b|{f(x)-g(x)}|dx$ | D. | $|{f_a^b(f(x)-g(x))dx}|$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com