某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件),可近似看做一次函數(shù)y=kx+b的關(guān)系(圖象如下圖所示)
(1)根據(jù)圖象,求一次函數(shù)y=kx+b的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元;
①求S關(guān)于的函數(shù)表達(dá)式;
②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià)。
解:(1)由圖像可知,,解得,
所以y=-x+1000(500≤x≤800)
(2)①由(1),=,
②由①可知,,其圖像開口向下,對(duì)稱軸為x=750 ,
所以當(dāng)x=750時(shí),,
即該公司可獲得的最大毛利潤為62500元,此時(shí)相應(yīng)的銷售單價(jià)為750元/件
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件),可近似看做一次函數(shù)y=kx+b的關(guān)系(圖象如圖所示).
(1)根據(jù)圖象,求一次函數(shù)y=kx+b的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元,
    ①求S關(guān)于x的函數(shù)表達(dá)式;
    ②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示)

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià).

(提示:毛利潤=銷售總價(jià)-成本總價(jià))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南瀏陽一中高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山西省臨汾市高一年級(jí)學(xué)段考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分10分)

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤,并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案