【題目】對某校高二年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
(1)求出表中,及圖中的值;
(2)若該校高二學生有人,試估計該校高二學生參加社區(qū)服務的次數(shù)在區(qū)間內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于次的學生中任選人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.
【答案】解:(Ⅰ)由分組內(nèi)的頻數(shù)是,頻率是知,,
所以. ………………2分
因為頻數(shù)之和為,所以,. ………………3分
. ………………4分
因為是對應分組的頻率與組距的商,所以.……………6分
(Ⅱ)因為該校高三學生有240人,分組內(nèi)的頻率是,
所以估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內(nèi)的人數(shù)為人. ………8分
(Ⅲ)這個樣本參加社區(qū)服務的次數(shù)不少于20次的學生共有人,
設在區(qū)間內(nèi)的人為,在區(qū)間內(nèi)的人為.
則任選人共有
,15種情況, ………………10分
而兩人都在內(nèi)只能是一種, ………………12分
所以所求概率為.(約為) ………………13分
【解析】試題分析:(1)根據(jù)公式先求得總數(shù),根據(jù)總數(shù)可求得,再根據(jù)可求得.根據(jù)頻率和為1求.頻率分布直方圖中每個小矩形的面積表示該組的頻率,根據(jù)頻率和為1可求得的值. (2)用總數(shù)240乘以該組的頻率即為該組的頻數(shù). (3)從參加社區(qū)服務的次數(shù)不少于次的學生共6人從中任選人將所有情況一一例舉,再將至多一人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的事件一一例舉,由古典概型概率公式可求得所求概率.
試題解析:解:(1)由分組內(nèi)的頻數(shù)是,頻率是知,,
所以.因為頻數(shù)之和為,所以.
.
因為是對應分組的頻率與組距的商,所以.
因為該校高二學生有人,分組內(nèi)的頻率是,
所以估計該校高二學生參加社區(qū)服務的次數(shù)在此區(qū)間內(nèi)的人數(shù)為人.
這個樣本參加社區(qū)服務的次數(shù)不少于次的學生共有人,
設在區(qū)間內(nèi)的人為,在區(qū)間內(nèi)的人為.
則任選人共有,,,,,,,,,,,,,,種情況,
而兩人都在內(nèi)只能是一種,
所以所求概率為.(約為)
科目:高中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,越來越多的人參與了潛水這項活動。某潛水中心調(diào)查了100名男姓與100名女姓下潛至距離水面5米時是否會耳鳴,下圖為其等高條形圖:
繪出2×2列聯(lián)表;
②根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.05的前提下認為耳鳴與性別有關系?
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與短軸兩端點構成一個面積為2的等腰直角三角形,為坐標原點.
(1)求橢圓的方程;
(2)設點在橢圓上,點在直線上,且,求證:為定值;
(3)設點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時)
(Ⅰ)應收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應用.某網(wǎng)絡運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):
手機品牌 型號 | I | II | III | IV | V |
甲品牌(個) | 4 | 3 | 8 | 6 | 12 |
乙品牌(乙) | 5 | 7 | 9 | 4 | 3 |
手機品牌 紅包個數(shù) | 優(yōu) | 非優(yōu) | 合計 |
甲品牌(個) | |||
乙品牌(個) | |||
合計 |
(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關?
(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.
①求在型號I被選中的條件下,型號II也被選中的概率;
②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學期望.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|ax2+3x+1=0,x∈R},(1)若A中只有一個元素,求實數(shù)a的值.(2)若A中至多有一個元素,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)在上的最小值;
(Ⅱ)設函數(shù),若函數(shù)的零點有且只有一個,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為,請預測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com