【題目】在平面直角坐標(biāo)系中,已知橢圓E:的離心率是,短軸長(zhǎng)為2,若點(diǎn)A,B分別是橢圓E的左右頂點(diǎn),動(dòng)點(diǎn),,直線交橢圓E于P點(diǎn).
(1)求橢圓E的方程
(2)①求證:是定值;
②設(shè)的面積為,四邊形的面積為,求的最大值.
【答案】(1)(2)①見(jiàn)解析;②1
【解析】
(1)由已知可得的值,再由離心率得到關(guān)系,轉(zhuǎn)化為關(guān)系,即可求出橢圓方程;
(2)①由(1)得,求出直線方程,與橢圓方程聯(lián)立,求出點(diǎn)坐標(biāo),進(jìn)而得出坐標(biāo),即可證明結(jié)論;
②,將表示為關(guān)于的函數(shù),進(jìn)而得出關(guān)于的函數(shù),整理利用的范圍,即可求解.
(1)∵短軸長(zhǎng)為2,∴,
∵
∴,∴橢圓方程為
(2) ①法一:∵ 設(shè):
∴∴
∴ ∴
∴
∴
∴
②∵
∴
當(dāng)時(shí)等號(hào)成立,
∴的最大值為1
法二:①設(shè):
∴
其中,,
∴,,
∴
②
∴
由于,所以直線的斜率
∴的最大值為1,當(dāng)且僅當(dāng)等號(hào)成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓規(guī)是用來(lái)畫(huà)橢圓的一種器械,它的構(gòu)造如圖所示,在一個(gè)十字形的金屬板上有兩條互相垂直的導(dǎo)槽,在直尺上有兩個(gè)固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動(dòng),在直尺上的點(diǎn)M處用套管裝上鉛筆,使直尺轉(zhuǎn)動(dòng)一周,則點(diǎn)M的軌跡C是一個(gè)橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導(dǎo)槽的交點(diǎn)為原點(diǎn)O,橫槽所在直線為x軸,建立直角坐標(biāo)系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點(diǎn)M的坐標(biāo),并求出C的普通方程;
(2)已知過(guò)C的左焦點(diǎn)F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點(diǎn),過(guò)點(diǎn)F且垂直于l1的直線l2與C交于G,H兩點(diǎn).當(dāng),|GH|,依次成等差數(shù)列時(shí),求直線l2的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①,且,②,且,③,且這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,若問(wèn)題中的存在,求出和數(shù)列的通項(xiàng)公式與前項(xiàng)和;若不存在,請(qǐng)說(shuō)明理由.
設(shè)為各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)若對(duì)任意,恒成立,求的取值集合;
(2)設(shè),點(diǎn),點(diǎn),直線的斜率為求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,右頂點(diǎn),上頂點(diǎn)為B,左右焦點(diǎn)分別為,且,過(guò)點(diǎn)A作斜率為的直線l交橢圓于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)設(shè)P為的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)文明城市是中國(guó)所有城市品牌中含金量最高、創(chuàng)建難度最大的一個(gè),是反映城市整體文明水平的綜合性榮譽(yù)稱號(hào),是目前國(guó)內(nèi)城市綜合類(lèi)評(píng)比中的最高榮譽(yù),也是最具價(jià)值的城市品牌,作為普通市民,既是城市文明的最大受益者,更是文明城市的主要?jiǎng)?chuàng)造者,皖北某市為提高市民對(duì)文明城市創(chuàng)建的認(rèn)識(shí),舉辦了“創(chuàng)建文明城市”知識(shí)競(jìng)賽,從所有答卷中隨機(jī)抽取400份試卷作為樣本,將樣本的成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:后得到如圖所示的頻率分布直方圖.
(Ⅰ)求樣本的平均數(shù);
(Ⅱ)現(xiàn)從該樣本成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段內(nèi)的市民中按分層抽樣選取6人,求從這6人中隨機(jī)選取2人,且2人的競(jìng)賽成績(jī)之差的絕對(duì)值大于20的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷(xiāo)售量(單位:萬(wàn)件)與月銷(xiāo)售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷(xiāo)售量和月銷(xiāo)售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:
月銷(xiāo)售單價(jià)(元/件) | ||||||
月銷(xiāo)售量(萬(wàn)件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;
(3)已知該商品的月銷(xiāo)售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷(xiāo)售單價(jià)為何值時(shí),商品的月銷(xiāo)售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:()的焦點(diǎn)為F,過(guò)F且斜率為1的直線與C交于A,B兩點(diǎn),.
(1)求C的方程;
(2)過(guò)點(diǎn)的直線l交C于點(diǎn)M,N,點(diǎn)Q為的中點(diǎn),軸交C于點(diǎn)R,且,證明:動(dòng)點(diǎn)T在定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com