A. | (1)(2) | B. | (2)(3) | C. | (3)(4) | D. | (1)(4) |
分析 利用直線與平面垂直的判定定理與線面平行的判斷定理,平面與平面平行的判定與性質(zhì)定理,對選項(xiàng)逐一判斷即可.
解答 解:對于(1),若m∥α,m∥β,則α與β可能相交;故錯(cuò)誤;
對于(2),若α∩β=n,m∥n,則m∥α,m∥β,則m可能在α或β內(nèi);故錯(cuò)誤;
對于(3),若α∥γ,β∥γ,則α∥β,根據(jù)線面平行的性質(zhì)定理;故正確;
對于(4),由面面平行的性質(zhì)定理可得:若α∥β,α∩γ=m,β∩γ=n,則m∥n是正確的,故正確;
故選C
點(diǎn)評 本題考查線面、面面、線線的位置關(guān)系及有關(guān)的判斷定理與性質(zhì)定理,考查學(xué)生靈活運(yùn)用知識(shí)的能力,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) | D. | f(1)<2($\frac{π}{6}$)sin1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b⇒a2>b2 | B. | a>b⇒2a>2b | ||
C. | a<b⇒$\frac{1}{a}$>$\frac{1}$ | D. | 1<a<b⇒loga2<logb2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com