分析 利用已知條件推出新數(shù)列是等比數(shù)列,然后求解通項(xiàng)公式即可.
解答 解:數(shù)列{an}滿足a1=1,$\frac{1}{{a}_{n}}$=$\frac{3}{{a}_{n+1}}$+$\frac{4}{{a}_{n}•{a}_{n+1}}$,
可得:an+1=3an+4,即an+1+2=3(an+2),所以數(shù)列{an+2}是以3為首項(xiàng)以3為公比的等比數(shù)列,
所以an+2=3n,
可得an=3n-2(n∈N*).
故答案為:3n-2(n∈N*).
點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,考查新數(shù)列的判斷與應(yīng)用,考查計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,0) | C. | (-1,+∞) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a∥b,b?α,則a∥α | B. | a?α,b?β,α∥β,則a∥b | ||
C. | a?α,b?α,α∥β,b∥β,則α∥β | D. | α∥β,a?α,則a∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com