經(jīng)過(guò)橢圓+y2=1的一個(gè)焦點(diǎn)作傾斜角為45°的直線l,交橢圓于A、B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則等于( )
A.-3
B.-
C.-或-3
D.±
【答案】分析:先根據(jù)橢圓方程求得焦點(diǎn)坐標(biāo),進(jìn)而設(shè)出直線l的方程,與橢圓方程聯(lián)立消去y,設(shè)A(x1,y1),B(x2,y2),根據(jù)韋達(dá)定理求得x1•x2和x1+x2的值,進(jìn)而根據(jù)直線方程求得y1y2的值,最后根據(jù)向量的計(jì)算法則求得答案.
解答:解:由+y2=1,得a2=2,b2=1,c2=a2-b2=1,焦點(diǎn)為(±1,0).
直線l不妨過(guò)右焦點(diǎn),傾斜角為45°,直線l的方程為y=x-1.
代入+y2=1得x2+2(x-1)2-2=0,
即3x2-4x=0.設(shè)A(x1,y1),B(x2,y2),
則x1•x2=0,x1+x2=,y1y2=(x1-1)(x2-1)=x1x2-(x1+x2)+1=1-=-,
=x1x2+y1y2=0-=-
故選B
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用.當(dāng)涉及過(guò)叫焦點(diǎn)的直線時(shí),常需設(shè)出直線方程與橢圓方程聯(lián)立利用韋達(dá)定理來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜率為1的直線l經(jīng)過(guò)橢圓+y2=1的右焦點(diǎn)交橢圓于A、B兩點(diǎn),則弦AB的長(zhǎng)是__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)橢圓+y2=1的一個(gè)焦點(diǎn)作傾斜角為45°的直線l,交橢圓于A、B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則·等于

A.-3                  B.                 C.或-3               D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 圓錐曲線與方程》2010年單元測(cè)試卷(5)(解析版) 題型:選擇題

經(jīng)過(guò)橢圓+y2=1的一個(gè)焦點(diǎn)作傾斜角為45°的直線l,交橢圓于A、B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則等于( )
A.-3
B.-
C.-或-3
D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

經(jīng)過(guò)橢圓+y2=1的一個(gè)焦點(diǎn)作傾斜角為45°的直線l,交橢圓于A、B兩點(diǎn).設(shè)O為坐標(biāo)原點(diǎn),則等于( )
A.-3
B.-
C.-或-3
D.±

查看答案和解析>>

同步練習(xí)冊(cè)答案