已知,求證a、b、c中至少有一個(gè)等于1.
【答案】分析:由 ,將式子進(jìn)行變形整理,得出(a+c)(a+b)(b+c)=0,即(1-b)(1-c)(1-a)=0從而得出原命題正確.
解答:證明:本題即要證明 a-1、b-1、c-1中至少有一個(gè)為零.
,∴(a+b+c)()=1,
∴(a+b+c)(ab+ac+bc)-abc=0,∴(a+b+c)[b(a+c)+ac(a+b+c)]-abc=0,
∴(a+b+c)b(a+c)+ac(a+c)=0,∴(a+c)(ab+b2+bc+ac)=0,
∴(a+c)(a+b)(b+c)=0,∴(1-b)(1-c)(1-a)=0,
故1-b、1-c、1-a中至少有一個(gè)等于0,∴a,b,c 中至少有一個(gè)等于1.
點(diǎn)評(píng):此題主要考查了分式的等式證明,由已知得出(a+b+c)()=1,進(jìn)而得出(1-b)(1-c)(1-a)=0,即(1-b)(1-c)(1-a)=0,從而解決問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問:是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1;
(Ⅱ)請(qǐng)寫出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選考題部分
(1)(選修4-4 參數(shù)方程與極坐標(biāo))(本小題滿分7分)
在極坐標(biāo)系中,過曲線L:ρsin2θ=2acosθ(a>0)外的一點(diǎn)A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫出曲線L和直線l的普通方程(以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數(shù)列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3
;
(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)學(xué)公式,求證a、b、c中至少有一個(gè)等于1.

查看答案和解析>>

同步練習(xí)冊(cè)答案