設(shè),.
(Ⅰ)當(dāng)時(shí),求曲線在處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對任意的,都有成立,求實(shí)數(shù)的取值范圍.
(1);(2);(3).
解析試題分析:本題考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值等基礎(chǔ)知識,考查函數(shù)思想和轉(zhuǎn)化思想,考查綜合分析和解決問題的能力.第一問,將代入得到解析式,求將代入得到切線的斜率,再將代入到中得到切點(diǎn)的縱坐標(biāo),利用點(diǎn)斜式求出切線方程;第二問,先將問題轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為求函數(shù)的最大值和最小值問題,對求導(dǎo),通過畫表判斷函數(shù)的單調(diào)性和極值,求出最值代入即可;第三問,結(jié)合第二問的結(jié)論,將問題轉(zhuǎn)化為恒成立,進(jìn)一步轉(zhuǎn)化為恒成立,設(shè)出新函數(shù),求的最大值,所以即可.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
試題解析:(1)當(dāng)時(shí),,,,,
所以曲線在處的切線方程為; 2分
(2)存在,使得成立等價(jià)于:,
考察,,
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(Ⅰ)當(dāng)時(shí),試討論的單調(diào)性;
(Ⅱ)設(shè),當(dāng)時(shí),若對任意,存在,使,求實(shí)數(shù)取值范圍.
(1)求f(x)在x=3處的切線斜率;
(2)若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實(shí)數(shù)的值;
(Ⅲ)設(shè),求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))
(Ⅰ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若對一切,恒成立,求實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),求在處的切線方程;
(2)若在內(nèi)單調(diào)遞增,求的取值范圍.
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實(shí)數(shù)的取值范圍.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號