精英家教網 > 高中數學 > 題目詳情

已知函數,其中.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數的值;
(Ⅲ)設,求在區(qū)間上的最小值.(為自然對數的底數)

(Ⅰ)的單調遞減區(qū)間是,單調遞增區(qū)間是;(Ⅱ)
(Ⅲ)當時,最小值為;當時,的最小值=;當時,最小值為.

解析試題分析:(Ⅰ)根據函數求解導數,然后令導數大于零或者小于零得到單調區(qū)間;
(Ⅱ)根據給定的切線方程得到切點的坐標,進而得到參數的值;
(Ⅲ)對于函數的最值問題,根據給定的函數,求解導數,運用導數的符號判定單調性,和定義域結合得到最值.
試題解析:(Ⅰ),(),                        2分
在區(qū)間上,;在區(qū)間上,.
所以,的單調遞減區(qū)間是,單調遞增區(qū)間是. 4分
(Ⅱ)設切點坐標為,則          6分(1個方程1分)
解得,.                                  7分
(Ⅲ)
,                                  8分
,得,
所以,在區(qū)間上,為遞減函數,
在區(qū)間上,為遞增函數.                     9分
,即時,在區(qū)間上,為遞增函數,
所以最小值為.                       10分
,即時,在區(qū)間上,為遞減函數,
所以最小值為.               11分
,即時,最小值
=.
綜上所述,當時,最小值為;當時,的最小值=;當時,最小值為.    12分
考點:1.用導數處理函數的單調區(qū)間和函數的最值;2.求曲線在某點的切線方程

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,.
(1)若曲線在它們的交點處有相同的切線,求實數、的值;
(2)當時,若函數在區(qū)間內恰有兩個零點,求實數的取值范圍;
(3)當,時,求函數在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)求函數在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)當a=1時,求函數f(x)的最小值;
(II)當a≤0時,討論函數f(x)的單調性;
(III)是否存在實數a,對任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數在點處的切線方程;
(2)若函數上的圖像與直線恒有兩個不同交點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,.
(Ⅰ)當時,求曲線處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數;
(Ⅲ)如果對任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)當時,求曲線處的切線方程;
(2)當時,求函數的單調區(qū)間;
(3)在(2)的條件下,設函數,若對于[1,2],
[0,1],使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)寫出函數的單調區(qū)間;
(2)若恒成立,求實數的取值范圍;
(3)若函數上值域是,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中,
(Ⅰ)若的最小值為,試判斷函數的零點個數,并說明理由;
(Ⅱ)若函數的極小值大于零,求的取值范圍.

查看答案和解析>>

同步練習冊答案