【題目】已知函數(shù),圖象的一個(gè)對(duì)稱中心,圖象的一條對(duì)稱軸,且上單調(diào),則符合條件的值之和為________.

【答案】

【解析】

先由對(duì)稱中心和對(duì)稱軸求出的所有值,再結(jié)合上單調(diào),確定的范圍,從而求出的可能值,逐個(gè)驗(yàn)證是否滿足條件,即可得出結(jié)論.

由題意可得,

,,所以,,

又因?yàn)?/span>上單調(diào),

所以,即,

,所以當(dāng)時(shí),,

因?yàn)?/span>圖象的一條對(duì)稱軸,

所以,,即,,

又因?yàn)?/span>,所以,此時(shí)

易知上單調(diào)遞減,符合條件;

當(dāng)時(shí),,因?yàn)?/span>圖象的一條對(duì)稱軸,

所以,,即,,

又因?yàn)?/span>,所以,此時(shí),

易知單調(diào)遞增,符合條件;

當(dāng)時(shí),,因?yàn)?/span>圖象的一條對(duì)稱軸,

所以,,即,,

又因?yàn)?/span>,所以,此時(shí),

易知上單調(diào)遞減,符合條件.

綜上,符合條件的值之和為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱長(zhǎng)為1的正方體中,為線段的動(dòng)點(diǎn),則下列4個(gè)命題中正確的有( )個(gè)

1 2)平面平面

3的最大值為 4的最小值為

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20197月,中國(guó)良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國(guó)際社會(huì)認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實(shí)證了中華五千年文明史.考古科學(xué)家在測(cè)定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時(shí)間(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過5730年后,碳14的質(zhì)量變?yōu)樵瓉淼?/span>______;經(jīng)過測(cè)定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的,據(jù)此推測(cè)良渚古城存在的時(shí)期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AP與圓內(nèi)切,且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過曲線上一點(diǎn))作兩條直線與曲線分別交于不同的兩點(diǎn),,若直線,的斜率分別為,,且.證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為的準(zhǔn)線,軸,軸,、交拋物線兩點(diǎn),交、兩點(diǎn),已知的面積是2倍,則中點(diǎn)軸的距離的最小值為(

A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓兩點(diǎn),點(diǎn)在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;

(3)當(dāng)變化時(shí),直線是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)同時(shí)滿足以下條件:①上為減函數(shù),上是增函數(shù);②是偶函數(shù);③處的切線與直線垂直.

1)求函數(shù)的解析式;

2)設(shè),若對(duì),使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn).

1)若為線段上的動(dòng)點(diǎn),證明:平面平面;

2)若為線段,,上的動(dòng)點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過x軸上的定點(diǎn)?若過定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案