13.給出以下結(jié)論:
(1)直線(xiàn)a∥平面α,直線(xiàn)b?α,則a∥b.
(2)若a?α,b?α,則a、b無(wú)公點(diǎn).       
(3)若a?α,則a∥α或a與α相交 
(4)若a∩α=A,則a?α.
正確的個(gè)數(shù)為(  )
A.1個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

分析 在(1)中,a與b異面或平行;在(2)中,a、b至多有一個(gè)公共點(diǎn); 在(3)中,由直線(xiàn)與平面的位置關(guān)系得a∥α或a與α相交; 在(4)中,由線(xiàn)面相交的定義得a?α.

解答 解:在(1)中,直線(xiàn)a∥平面α,直線(xiàn)b?α,則a與b異面或平行,故(1)錯(cuò)誤;
在(2)中,若a?α,b?α,則a、b至多有一個(gè)公共點(diǎn),故(2)錯(cuò)誤;
在(3)中,若a?α,則由直線(xiàn)與平面的位置關(guān)系得a∥α或a與α相交,故(3)正確;
在(4)中,若a∩α=A,則由線(xiàn)面相交的定義得a?α,故(4)正確.
故選:D.

點(diǎn)評(píng) 本題考查命題真假的判斷,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=xlnx(x>0).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意x∈(0,+∞),f(x)≥$\frac{{-{x^2}+mx-3}}{2}$恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線(xiàn)EF和BC1所成角的度數(shù)是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)f(x)可導(dǎo)且下列各極限均存在,則( 。┏闪ⅲ
A.$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x}$=f′(0)B.$\underset{lim}{h→0}$$\frac{f(a+2h)-f(a)}{h}$=f′(a)
C.$\underset{lim}{△x→0}$$\frac{f({x}_{0})-f({x}_{0}-△x)}{△x}$=f′(x0D.$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$=f′(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,AB=AC,點(diǎn)M在BC上,$4\overrightarrow{BM}=\overrightarrow{BC}$,N是AM的中點(diǎn),sin∠BAM=$\frac{1}{3}$,AC=2,則$\overrightarrow{AM}•\overrightarrow{CN}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)直線(xiàn)l:3x+4y+a=0,圓C:(x-2)2+y2=22,若在圓C上存在兩點(diǎn)P,Q,在直線(xiàn)l上存在一點(diǎn)M,使得∠PMQ=90°,則a的取值范圍是[-16,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-1(x<1)}\\{\frac{lnx}{x}(x≥1)}\end{array}}\right.$關(guān)于x的方程2[f(x)]2+(1-2m)f(x)-m=0,有5不同的實(shí)數(shù)解,則m的取值范圍是(  )
A.$(-1,\frac{1}{e})$B.(0,+∞)C.$(0,\frac{1}{e})$D.$(0,\frac{1}{e}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題中,真命題的個(gè)數(shù)是.( 。
①命題“若p,則q”的否命題是“若p,則¬q”;
②xy≠10是x≠5或y≠2的充分不必要條件;
③已知命題p,q,若“p∧q”為假命題,則命題p與q一真一假;
④線(xiàn)性相關(guān)系數(shù)r的絕對(duì)值越接近1,表示兩個(gè)變量的相關(guān)性越強(qiáng).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.圓$ρ=\sqrt{2}(cosθ+sinθ)$的圓心的極坐標(biāo)是(1,$\frac{π}{4}$);半徑是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案