分析 (1)當(dāng)0≤n≤83時(shí),y=120元,當(dāng)n>85時(shí),y=10n-710,由此能求出申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系.
(2)①X的所有可能取值為152,154,156,158,160,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
②設(shè)申通公司的日工資為Y,求出EY159,由于到圓通公司的日工資的數(shù)學(xué)期望(均值)沒有申通公司的日工資的數(shù)學(xué)期望(均值)高,從而得到小王應(yīng)當(dāng)?shù)缴晖ü緫?yīng)聘“快遞員”的工作.
解答 解:(1)由題意:當(dāng)0≤n≤83時(shí),y=120元,
當(dāng)n>85時(shí),y=120+(n-83)×10=10n-710
∴申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系為:
y=$\left\{\begin{array}{l}{120,0≤n≤83}\\{10n-710,n>85}\end{array}\right.$.
(2)X的所有可能取值為152,154,156,158,160
①由題意:P(X=152)=0.1,P(X=154)=0.1,
P(X=156)=0.2,P(X=158)=0.3,P(X=160)=0.3,
∴X的分布列為:
X | 152 | 154 | 156 | 158 | 160 |
P | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 |
點(diǎn)評(píng) 本題考查函數(shù)關(guān)系的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 33 | B. | 32 | C. | 35 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3-2i | B. | 3+2i | C. | 2+3i | D. | 2-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-4,6} | B. | $\left\{{-\frac{7}{4},6}\right\}$ | C. | $\left\{{-4,-\frac{7}{4}}\right\}$ | D. | $\left\{{-4,-\frac{7}{4},6}\right\}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com