20.幾年來,網(wǎng)上購物風(fēng)靡,快遞業(yè)迅猛發(fā)展,某市的快遞業(yè)務(wù)主要由兩家快遞公司承接,即圓通公司與申通公司:“快遞員”的工資是“底薪+送件提成”:這兩家公司對(duì)“快遞員”的日工資方案為:圓通公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;申通公司規(guī)定快遞員每天底薪為120元,每日前83件沒有提成,超過83件部分每件提成10元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司各隨機(jī)抽取一名快遞員并記錄其100天的送件數(shù),得到如下條形圖:
(1)求申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;
(2)若將頻率視為概率,回答下列問題:
①記圓通公司的“快遞員”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)過的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

分析 (1)當(dāng)0≤n≤83時(shí),y=120元,當(dāng)n>85時(shí),y=10n-710,由此能求出申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系.
(2)①X的所有可能取值為152,154,156,158,160,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
②設(shè)申通公司的日工資為Y,求出EY159,由于到圓通公司的日工資的數(shù)學(xué)期望(均值)沒有申通公司的日工資的數(shù)學(xué)期望(均值)高,從而得到小王應(yīng)當(dāng)?shù)缴晖ü緫?yīng)聘“快遞員”的工作.

解答 解:(1)由題意:當(dāng)0≤n≤83時(shí),y=120元,
當(dāng)n>85時(shí),y=120+(n-83)×10=10n-710
∴申通公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系為:
y=$\left\{\begin{array}{l}{120,0≤n≤83}\\{10n-710,n>85}\end{array}\right.$.
(2)X的所有可能取值為152,154,156,158,160
①由題意:P(X=152)=0.1,P(X=154)=0.1,
P(X=156)=0.2,P(X=158)=0.3,P(X=160)=0.3,
∴X的分布列為:

X152154156158160
P0.10.10.20.30.3
∴X的數(shù)學(xué)期望EX=152×0.1+154×0.1+156×0.2+158×0.3+160×0.3=157.2(元)
②設(shè)申通公司的日工資為Y,
則EY=120+0×0.1+10×0.2+30×0.1+50×0.4+70×0.2=159(元)
由于到圓通公司的日工資的數(shù)學(xué)期望(均值)沒有申通公司的日工資的數(shù)學(xué)期望(均值)高,
所以小王應(yīng)當(dāng)?shù)缴晖ü緫?yīng)聘“快遞員”的工作.

點(diǎn)評(píng) 本題考查函數(shù)關(guān)系的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知命題p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦點(diǎn)在x軸上的橢圓,命題q:(m-1)x2+(m-3)y2=1表示雙曲線;若p∧q為真命題,則實(shí)數(shù)m的取值范圍是2<m<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知變量x,y滿足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,則z=8x•2y的最大值為(  )
A.33B.32C.35D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a∈R,則“a<3”是“|x+2|+|x-1|>a恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.與復(fù)數(shù)z的實(shí)部相等,虛部互為相反數(shù)的復(fù)數(shù)叫做z的共軛復(fù)數(shù),并記作$\overline z$,若z=i(3-2i)(其中i為復(fù)數(shù)單位),則$\overline z$=( 。
A.3-2iB.3+2iC.2+3iD.2-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的右焦點(diǎn)到該雙曲線漸近線的距離等于( 。
A.4B.3C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某單位計(jì)劃制作一批文件柜,需要大號(hào)鐵皮40塊,小號(hào)鐵皮100塊,已知市場(chǎng)出售A、B兩種不同規(guī)格的鐵皮,經(jīng)過測(cè)算,A種規(guī)格的鐵皮可同時(shí)裁得大號(hào)鐵皮2塊,小號(hào)鐵皮6塊,B塊規(guī)格的鐵皮可同時(shí)截得大號(hào)鐵皮1塊,小號(hào)鐵皮2塊,已知A種規(guī)格鐵皮每張250元,B種規(guī)格鐵皮每張90元.分別用x,y表示購買A、B兩種不同規(guī)格的鐵皮的張數(shù).
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)根據(jù)施工需求,A、B兩種不同規(guī)格的鐵皮各買多少張花費(fèi)資金最少?并求出最少資金數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 5x-y-6≤0.\end{array}\right.$若z=x+my的最小值是-5,則實(shí)數(shù)m取值集合是( 。
A.{-4,6}B.$\left\{{-\frac{7}{4},6}\right\}$C.$\left\{{-4,-\frac{7}{4}}\right\}$D.$\left\{{-4,-\frac{7}{4},6}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積為11+2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案