【題目】已知,分別為橢圓的左、右焦點,在橢圓上,的周長為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點的直線與橢圓交于兩點,設(shè)為坐標(biāo)原點,是否存在常數(shù),使得恒成立請說明理由.

【答案】(Ⅰ)(Ⅱ)當(dāng),

【解析】

(Ⅰ)由三角形周長可得,求出,再根據(jù)即可寫出橢圓標(biāo)準(zhǔn)方程(Ⅱ)假設(shè)存在常數(shù)滿足條件,分兩類討論(1)當(dāng)過點的直線的斜率不存在時,寫出A,B坐標(biāo),代入可得(2)當(dāng)過點的直線的斜率存在時設(shè)直線的方程為,設(shè),,聯(lián)立方程組,利用根與系數(shù)的關(guān)系代入 中化簡即可求出.

(Ⅰ)由題意,,

的周長為6,∴

,∴橢圓的標(biāo)準(zhǔn)方程為.

(Ⅱ)假設(shè)存在常數(shù)滿足條件.

(1)當(dāng)過點的直線的斜率不存在時,

,

∴當(dāng);

(2)當(dāng)過點的直線的斜率存在時,設(shè)直線的方程為設(shè),,

聯(lián)立,化簡得,

.

,解得

綜上所述,當(dāng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).

某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:

(1)若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯每度0.8元,試計算居民用電戶用電410度時應(yīng)交電費多少元?

(2)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;

(3)以表中抽到的10戶作為樣本估計全市居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年五月最受七中學(xué)子期待的學(xué)生活動莫過于學(xué)生節(jié),在每屆學(xué)生節(jié)活動中,著七中校服的布偶七中熊尤其受同學(xué)和老師歡迎.已知學(xué)生會將在學(xué)生節(jié)當(dāng)天售賣七中熊,并且會將所獲得利潤全部捐獻于公益組織.為了讓更多同學(xué)知曉,學(xué)生會宣傳部需要前期在學(xué)校張貼海報宣傳,成本為250元,并且當(dāng)學(xué)生會向廠家訂制七中熊時,需另投入成本(元),.通過市場分析, 學(xué)生會訂制的七中熊能全部售完.若學(xué)生節(jié)當(dāng)天,每只七中熊售價為70元,則當(dāng)銷量為______只時,學(xué)生會向公益組織所捐獻的金額會最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.

1)若,求數(shù)列的所有項的和;

2)若,求的最大值;

3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,角,,的內(nèi)角,其所對的邊分別為,.

(1)當(dāng)取得最大值時,求角的大;

(2)在(1)成立的條件下,當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,底面,,,點為棱的中點,點分別為棱上的動點(與所在棱的端點不重合),且滿足

1)證明:平面平面;

2)當(dāng)三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,若an2an12p,(n≥2,nN*p為常數(shù)),則稱{an}等方差數(shù)列,下列是對等方差數(shù)列的判斷:

①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;

{(﹣1n}是等方差數(shù)列;

③若{an}是等方差數(shù)列,則{akn}kN*,k為常數(shù))也是等方差數(shù)列;

④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.

其中正確命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列{an}n項和為Sn,且滿足a13,4Sn4n+1an2,設(shè)bnnN*)且數(shù)列{bn}的前n項和為Tn

(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;

(Ⅱ)若對任意的nN*,不等式λTnn(﹣1)n+1恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列各命題:

①兩兩相交且不共點的三條直線確定一個平面:

②若真線不平行于平面,則直線與平面有公共點:

③若兩個平面垂直,則一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線:

④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角相等或互補.

則其中正確的命題共有( )個

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案