18.在△ABC中,已知角A,B,C的對(duì)邊分別為a,b,c,且a=5,b=6,c=7,試判斷△ABC的形狀.

分析 由題意可得C為最大角,由余弦定理求得cosC>0,從而得到角C為銳角,△ABC為銳角三角形.

解答 解:△ABC中,a=5,b=6,c=7,
所以c為最大邊,C為最大角,
由余弦定理得
cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{5}^{2}{+6}^{2}{-7}^{2}}{2×5×6}$=$\frac{1}{5}$>0,
所以角C為銳角,
△ABC為銳角三角形.

點(diǎn)評(píng) 本題主要考查了三角形中大邊對(duì)大角、余弦定理的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.四面體ABCD中,AB和CD為對(duì)棱.設(shè)AB=a,CD=b,且異面直線AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ=$\frac{π}{2}$,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當(dāng)θ=$\frac{π}{2}$時(shí),證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖直三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,E、F分別是BC,CC1的中點(diǎn),
(1)證明:平面AEF⊥平面B1BCC1
(2)設(shè)AB的中點(diǎn)為D,∠CA1D=45°,求平面CA1D與平面ABC所成的銳二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿足:對(duì)任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn滿足Sn=$\frac{2}{3}$an+$\frac{1}{3}$,則{an}的通項(xiàng)公式${a}_{n}=(-2)^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:函數(shù)f(x)=x2是偶函數(shù),且在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若兩點(diǎn)A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)|$\overrightarrow{AB}$|取最小值時(shí),x的值等于$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面各組函數(shù)中為相等函數(shù)的是(  )
A.f(x)=$\sqrt{{{({x-1})}^2}}$,g(x)=x-1B.f(x)=$\sqrt{{x^2}-1},g(x)=\sqrt{x-1}•\sqrt{x+1}$
C.f(x)=x-1,g(x)=$\frac{1}{x-1}$D.f(x)=x0,g(x)=$\frac{1}{x^0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={x|-1≤x≤5},B={x|(x-2)(3-x)≥0},在集合A中任取一個(gè)元素x,則事件“x∈A∩B”的概率是$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案