根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點(diǎn),經(jīng)拋物線反射后,反射光線必過(guò)焦點(diǎn).然后求解此題:拋物線y2=4x上有兩個(gè)定點(diǎn)A、B分別在對(duì)稱(chēng)軸的上、下兩側(cè),一水平光線射到A點(diǎn)后,反射光線會(huì)平行y軸,一水平光線射到B點(diǎn)后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求這個(gè)最大面積.
【答案】分析:(1)由已知得焦點(diǎn)F(1,0),且FA⊥x軸,所以A (1,2),同理得到B(4,-4),由此能求出直線AB的方程.
(2)法一:設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x,y),且1≤x≤4,-4≤y≤2.由點(diǎn)P到直線AB的距離d=,由此得到△PAB的面積最大值和此時(shí)P點(diǎn)坐標(biāo).
法二:,由此得到△PAB的面積最大值和此時(shí)P點(diǎn)坐標(biāo).
解答:解:(1)由已知得焦點(diǎn)F(1,0),
且FA⊥x軸,
∴A (1,2),
同理,
得到B(4,-4),
所以直線AB的方程為2x+y-4=0.(6分)
(2)法一:設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x,y),
且1≤x≤4,-4≤y≤2.
則點(diǎn)P到直線AB的距離d=,
所以當(dāng)y=-1時(shí),d取最大值,
(10分)
所以△PAB的面積最大值為
此時(shí)P點(diǎn)坐標(biāo)為.(12分)
法二:,
,
∴△PAB的面積最大值為,
此時(shí)P點(diǎn)坐標(biāo)為
點(diǎn)評(píng):本題考查直線方程的求法和求△PAB的最大面積.綜合性強(qiáng),難度大,容易出錯(cuò).解題時(shí)要認(rèn)真審題,通過(guò)直線與圓錐曲線的位置關(guān)系處理,考查學(xué)生的運(yùn)算能力.通過(guò)向量與幾何問(wèn)題的綜合,考查學(xué)生分析轉(zhuǎn)化問(wèn)題的能力,探究研究問(wèn)題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點(diǎn),經(jīng)拋物線反射后,反射光線必過(guò)焦點(diǎn).然后求解此題:拋物線y2=4x上有兩個(gè)定點(diǎn)A、B分別在對(duì)稱(chēng)軸的上、下兩側(cè),一水平光線射到A點(diǎn)后,反射光線會(huì)平行y軸,一水平光線射到B點(diǎn)后,反射光線所在直線的斜率為 -
43

(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點(diǎn),經(jīng)拋物線反射后,反射光線必過(guò)焦點(diǎn).然后求解此題:拋物線y2=4x上有兩個(gè)定點(diǎn)A、B分別在對(duì)稱(chēng)軸的上、下兩側(cè),一水平光線射到A點(diǎn)后,反射光線會(huì)平行y軸,一水平光線射到B點(diǎn)后,反射光線所在直線的斜率為 -
4
3

(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年黑龍江省鶴崗市東山一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點(diǎn),經(jīng)拋物線反射后,反射光線必過(guò)焦點(diǎn).然后求解此題:拋物線y2=4x上有兩個(gè)定點(diǎn)A、B分別在對(duì)稱(chēng)軸的上、下兩側(cè),一水平光線射到A點(diǎn)后,反射光線會(huì)平行y軸,一水平光線射到B點(diǎn)后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省佛山市南海中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

根據(jù)拋物線的光學(xué)原理:一水平光線射到拋物線上一點(diǎn),經(jīng)拋物線反射后,反射光線必過(guò)焦點(diǎn).然后求解此題:拋物線y2=4x上有兩個(gè)定點(diǎn)A、B分別在對(duì)稱(chēng)軸的上、下兩側(cè),一水平光線射到A點(diǎn)后,反射光線會(huì)平行y軸,一水平光線射到B點(diǎn)后,反射光線所在直線的斜率為 
(Ⅰ)求直線AB的方程.
(Ⅱ)在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案