分析:(Ⅰ)當(dāng)n≥2時,利用a
n=a
n-1+2n-1,寫出a
2-a
1=2×2-1,a
3-a
2=2×3-1,…a
n-a
n-1=2×n-1
各式相加,可求數(shù)列{a
n}的通項公式;
(Ⅱ)先放縮,再裂項求和,即可證得結(jié)論;
(Ⅲ)先計算當(dāng)n=1時,
=1>=Bn;當(dāng)n=2時,
==Bn;當(dāng)n=3時,
=<=Bn;
猜想當(dāng)n≥3時,
<Bn,再用數(shù)學(xué)歸納法證明.
解答:(Ⅰ)解:當(dāng)n≥2時,∵a
n=a
n-1+2n-1,
∴a
2-a
1=2×2-1
a
3-a
2=2×3-1
…
a
n-a
n-1=2×n-1
各式相加得a
n-a
1=2(2+3+…+n)-(n-1),
∴a
n-a
1=2×
-(n-1)∴
an=n2.
又當(dāng)n=1時,a
1=1滿足上式,故
an=n2.
(Ⅱ)證明:
Tn=1+++…+<1+++…+=
1+1-+-+…+-=2-<2.
(Ⅲ)解:
bn=1-=,
Bn=••…=,
當(dāng)n=1時,
=1>=Bn;
當(dāng)n=2時,
==Bn;
當(dāng)n=3時,
=<=Bn;
猜想當(dāng)n≥3時,
<Bn.
以下用數(shù)學(xué)歸納法證明:
①當(dāng)n=3時,左邊=
=<=Bn=右邊,命題成立.
②假設(shè)當(dāng)n=k(k≥3)時,
<Bk=,即
<.
當(dāng)n=k+1時,
=•<•<=
<=Bk+1,命題成立.
故當(dāng)n≥3時,
<Bn.
綜上所述,當(dāng)n=1時,
>Bn,
當(dāng)n=2時,
=Bn,
當(dāng)n≥3時,
<Bn.
點評:本題以數(shù)列遞推式為載體,考查數(shù)列的通項公式,考查不等式的證明,同時考查裂項法,數(shù)學(xué)歸納法的運用,先猜后證是關(guān)鍵.