已知雙曲線1(a>0,b>0)的漸近線方程為y±x,則它的離心率為________

 

2

【解析】由題意,得e2.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:填空題

設拋物線y28x的焦點為F,準線為l,P為拋物線上一點PAlA為垂足,如果AF的斜率為-,那么|PF|________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:解答題

如圖,四邊形ABCD是邊長為2的正方形,直線l與平面ABCD平行,EFl上的兩個不同點,且EAEDFBFC.EF是平面ABCD內(nèi)的兩點,EEFF都與平面ABCD垂直.

(1)證明:直線EF垂直且平分線段AD;

(2)EADEAB60 °EF2.求多面體ABCDEF的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練10練習卷(解析版) 題型:選擇題

已知首項為正數(shù)的等差數(shù)列{an}的前n項和為Sn,若a1 006a1 007是方程x22 012x2 0110的兩根,則使Sn>0成立的正整數(shù)n的最大值是(  )

A1006 B1007 C2011 D2012

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題

設直線lxym0與拋物線Cy24x交于不同兩點A,B,F 為拋物線的焦點.

(1)ABF的重心G的軌跡方程;

(2)如果m=-2,求ABF的外接圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:選擇題

已知圓x2y24x90y軸的兩個交點A,B都在某雙曲線上,且A,B兩點恰好將此雙曲線的焦距三等分,則此雙曲線的標準方程為(  )

A. 1 B.1 C.1 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA平面ABCD,EBD的中點,GPD的中點,DAB≌△DCBEAEBAB1,PA,連接CE并延長交ADF.

(1)求證:AD平面CFG;

(2)求平面BCP與平面DCP的夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:填空題

yf(x)是一次函數(shù),f(0)1,且f(1),f(4),f(13)成等比數(shù)列,則f(2)f(4)f(2n)________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練x4-1練習卷(解析版) 題型:解答題

如圖,過圓O外一點M作它的一條切線,切點為A,過A點作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OPOA2;

(2)N為線段AP上一點,直線NB垂直直線ON,且交圓OB點.過B點的切線交直線ONK.證明:OKM90°.

 

查看答案和解析>>

同步練習冊答案