把命題“方程x2-4=0的根為x=±2”改成“若p則q”的形式為


  1. A.
    若x2-4=0,則x=2且x=-2
  2. B.
    若x2-4=0,則x=2或x=-2
  3. C.
    若x=±2,則x2-4=0
  4. D.
    以上都不對(duì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有4個(gè)命題:
①當(dāng)(1+4k2)x2+8kmx+4m2-4=0時(shí),2x+
1
2x
的最小值為2;
②若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線方程為y=
3
x
,且其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則雙曲線的離心率為2;
③將函數(shù)y=cos2x的圖象向右平移
π
6
個(gè)單位,可以得到函數(shù)y=sin(2x-
π
6
)
的圖象;
其中 錯(cuò)誤命題的序號(hào)為
 
(把你認(rèn)為錯(cuò)誤命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)于任意x∈R,都有f(x)=f(-x)及f(x+4)=f(x)+f(2)成立.當(dāng)x1、x2∈[0,2]且x1≠x2時(shí),都有[f(x1)-f(x2)](x1-x2)>0成立.現(xiàn)給出下列四個(gè)結(jié)論:
①f(2)=0;②函數(shù)f(x)在區(qū)間[-6,-4]上為增函數(shù);③直線x=-4是函數(shù)f(x)的一條對(duì)稱軸;④方程f(x)=0在區(qū)間[-6,6]上有4個(gè)不同的實(shí)根.
其中正確命題的序號(hào)是
①③④
. (把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)函數(shù)f(x)=tanx有無數(shù)個(gè)零點(diǎn);
(2)若關(guān)于x的方程((
1
2
)|x|-m=0
有解,則實(shí)數(shù)m的取值范圍是(0,1];
(3)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移
π
6
個(gè)單位后,得到的函數(shù)解析式可以表示成f(x)=2sin2(x+
π
6
);
(4)函數(shù)f(x)=
1
2
sinx+
1
2
|sinx|的值域是[-1,1];
(5)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對(duì)任意的實(shí)數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中正確的命題有
3
3
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湛江一模)下列四個(gè)論述:
(1)線性回歸方程y=bx+a必過點(diǎn)(
.
x
,
.
y

(2)已知命題p:“?x∈R,x2≥0“,則命題¬p是“?x0∈R,
x
2
0
<0“
(3)函數(shù)f(x)=
x2(x≥1)
x(x<1)
在實(shí)數(shù)R上是增函數(shù);
(4)函數(shù)f(x)=sinx+
4
sinx
的最小值是4
其中,正確的是
(1)(2)(3)
(1)(2)(3)
(把所有正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案