【題目】某工廠有工人1000名,為了提高工人的生產(chǎn)技能,特組織工人參加培訓(xùn).其中250名工人參加過短期培訓(xùn)(稱為類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為類工人).現(xiàn)從該工廠的工人中共抽查了100名工人作為樣本,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力是指工人一天加工的零件數(shù)),得到類工人生產(chǎn)能力的莖葉圖(圖1),類工人生產(chǎn)能力的頻率分布直方圖(圖2).
(1)在樣本中求類工人生產(chǎn)能力的中位數(shù),并估計(jì)類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,現(xiàn)以樣本中頻率作為概率,從1000名工人中按分層抽樣共抽取名工人進(jìn)行調(diào)查,請(qǐng)估計(jì)這名工人中的各類人數(shù),完成下面的列聯(lián)表.
若研究得到在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān),則的最小值為多少?
參考數(shù)據(jù):
參考公式: ,其中.
【答案】(1)132.6;(2)360
【解析】試題分析:(1)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù),由頻率分布直方圖,估計(jì)出B類工人生產(chǎn)能力的平均數(shù);
(2)列出能力與培訓(xùn)的列聯(lián)表,計(jì)算卡方,結(jié)合表格作出判斷.
試題解析:
(1)由莖葉圖知類工人生產(chǎn)能力的中位數(shù)為123,由頻率分布直方圖,估計(jì)類工人生產(chǎn)能力的平均數(shù)為 ;
(2)由(1)及所給數(shù)據(jù)得能力與培訓(xùn)的列聯(lián)表如下:
由上表得
,
解得,又人數(shù)必須取整,
∴的最小值為360.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn), ,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|.
(1)解不等式f(x)+f(x+1)≥5;
(2)若|a|>1且 ,證明:|b|>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是海岸線上的三個(gè)集鎮(zhèn), 位于的正南方向處, 位于的北偏東60°方向處;
(1)為了緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭,開辟水上直達(dá)航線,使, .勘測(cè)時(shí)發(fā)現(xiàn)以為圓心, 為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行,問此航線是否影響船只航行?
(2)為了發(fā)展經(jīng)濟(jì)需要,政府計(jì)劃填海造陸,建造一個(gè)商業(yè)區(qū)(如圖四邊形所示),其中, , ,求該商業(yè)區(qū)的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且).
(1)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍;
(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, , 且, 和都是邊長(zhǎng)為2的等邊三角形,設(shè)在底面的投影為.
(1)求證: 是的中點(diǎn);
(2)證明: ;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
求函數(shù)的解析式;
求在區(qū)間上的最大值和最小值;
當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海關(guān)對(duì)同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行隨機(jī)抽樣檢測(cè),已知從三個(gè)地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測(cè)人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機(jī)抽取6件樣品進(jìn)行檢測(cè).
(1)求這6件樣品中,來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件送往另一機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件樣品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x+1|﹣|2﹣x|.
(1)解不等式f(x)<0;
(2)若m,n∈R+ , ,求證:n+2m﹣f(x)>0恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com