A. | (0,$\sqrt{2}$) | B. | (0,$\sqrt{2}$)∪(4,+∞) | C. | (0,2) | D. | (0,2)∪(16,+∞) |
分析 先根據(jù)“設(shè)min{p,q}表示p,q兩者中的較小的一個”求得函數(shù)f(x),再按分段函數(shù)用分類討論解不等式.
解答 解:①當(dāng)3-$\frac{1}{2}$log2x<log2x時,
即 x>4時f(x)=3-$\frac{1}{2}$log2x,
②當(dāng)3-$\frac{1}{2}$log2x>log2x時,
即x<4時f(x)=log2x,
∴f(x)<1;
當(dāng)x>4時,
f(x)=3-$\frac{1}{2}$log2x<1,
此時:x>16;
當(dāng)x<4時f(x)=log2x<1,
此時:0<x<2;
綜上不等式的解集為:(0,2)∪(16,+∞).
故選:D.
點評 本題是一道新定義題,首先要根據(jù)定義求得函數(shù),再應(yīng)用函數(shù)解決相關(guān)問題,這類問題的解決,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,0)∪($\frac{1}{2}$,+∞) | B. | (-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$) | C. | (-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$) | D. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com