分析 (1)求出函數(shù)的導數(shù),計算f′(1),求出c的值,從而求出f(x)的解析式即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)f′(x)=$\frac{3}{2}$x2+c,當x=1時,f(x)取得極值,
則f′(1)=0,即$\frac{3}{2}$+c=0,得c=-$\frac{3}{2}$.故f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$x.
(2)f′(x)=$\frac{3}{2}$x2-$\frac{3}{2}$=$\frac{3}{2}$(x2-1)=$\frac{3}{2}$(x-1)(x+1),
令f′(x)=0,得x=-1或1.
x,f′(x),f(x)的變化情況如下表:
x | (-∞,-1) | -1 | (-1,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
點評 本題考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-20,-4) | B. | [-20,-4] | C. | [-29,-20] | D. | [-29,-4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2>b2 | B. | 2a>2b | C. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b | D. | a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com