已知橢圓(a>b>0),點(diǎn)在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.
(1)   (2)

(I)    解:因?yàn)辄c(diǎn)在橢圓上,故.可得
于是,所以橢圓的離心率
(II)解:設(shè)直線OQ的斜率為k,則其方程為.設(shè)點(diǎn)Q的坐標(biāo)為
由條件得消去并整理得  ①
,,
.
整理得.而,于是,代入①,
整理得
由(I)知,,即,可得.
所以直線OQ的斜率為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率,過左焦點(diǎn)作直線與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知兩點(diǎn),,曲線上的動(dòng)點(diǎn)滿足,直線與曲線交于另一點(diǎn)
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知方向向量為的直線l過橢圓的焦點(diǎn)以及點(diǎn)(0,),直線l與橢圓C交于 A 、B 兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長為。
(1)求橢圓C的方程
(2)過左焦點(diǎn)且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),
(O坐標(biāo)原點(diǎn)),求直線m的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C的離心率為,且過點(diǎn)Q(1,).
(1) 求橢圓C的方程;
(2) 若過點(diǎn)M(2,0)的直線與橢圓C相交于A,B兩點(diǎn),設(shè)P點(diǎn)在直線
上,且滿足 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C: 的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線與橢圓C交于不同的兩點(diǎn)M,N。
(1)  求橢圓C的方程
(2)  當(dāng)的面積為時(shí),求k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓,直線過橢圓左焦點(diǎn)且不與軸重合, 與橢圓交于,兩點(diǎn),當(dāng)軸垂直時(shí),,若點(diǎn)
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓交于兩點(diǎn),若,求的面積 的取值范圍(為橢圓的右焦點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是橢圓上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),是坐標(biāo)原點(diǎn),若的角平分線上一點(diǎn),且,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P為橢圓上一點(diǎn),F1F2是橢圓的兩個(gè)焦點(diǎn),,則△F1PF2的面積是          .

查看答案和解析>>

同步練習(xí)冊答案