設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a11-a8=3,S11-S8=3,則使an>0的最小正整數(shù)n的值是( 。
分析:由a11-a8=3d=3,知d=1,由S11-S8=a11+a10+a9=3a1+27d=3,知a1=-8,故an=-8+(n-1),由此能夠求出使an>0的最小正整數(shù)n的值.
解答:解:∵a11-a8=3d=3,∴d=1,
∵S11-S8=a11+a10+a9=3a1+27d=3,
∴a1=-8,
∴an=-8+(n-1)>0,
解得n>9,
因此最小正整數(shù)n的值是10.
故選C.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的合理運(yùn)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案