【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明:

【答案】1)當(dāng)時(shí),上是增函數(shù);當(dāng)時(shí),上是增函數(shù),在上是減函數(shù).;(2;(3)證明詳見(jiàn)解析.

【解析】

試題(1)函數(shù)的定義域?yàn)?/span>,分兩種情況分類討論,即可求解函數(shù)的單調(diào)性;(2)由(1)知時(shí),不成立,故,又由(1)知的最大值為,只需即可,即可求解;(3)由(2)知,當(dāng)時(shí),有恒成立,且上是減函數(shù),進(jìn)而,則,即,即可證明結(jié)論.

試題解析:(1) 函數(shù)的定義域?yàn)?/span>

當(dāng)時(shí),上是增函數(shù),

當(dāng)時(shí),若時(shí),有

時(shí),有,則上是增函數(shù),在上是減函數(shù).

2)由(1)知時(shí),上是增函數(shù),而不成立,故,又由(1)知的最大值為,要使恒成立,則即可,

,得.

3)由(2)知,當(dāng)時(shí),有恒成立,且上是減函數(shù),

,即,在上恒成立,令,則

,從而

得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的展開(kāi)式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開(kāi)式的各項(xiàng)系數(shù)之和為1024,則下列說(shuō)法正確的是(

A.展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256

B.展開(kāi)式中第6項(xiàng)的系數(shù)最大

C.展開(kāi)式中存在常數(shù)項(xiàng)

D.展開(kāi)式中含項(xiàng)的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫(xiě)出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;

(2)某稅務(wù)部門(mén)在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

先從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;

(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市隨機(jī)抽取一年(天)內(nèi)天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)(記為)的關(guān)

系式為:

試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于元且不超過(guò)元的概率;

(2)若本次抽取的樣本數(shù)據(jù)有天是在供暖季,其中有天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上有奇數(shù)條線段,甲乙兩人做如下游戲:兩人輪流(甲先乙后)給任一條尚未設(shè)定方向的線段設(shè)定一個(gè)方向,直至某次(甲)設(shè)定后,所有線段各有了一個(gè)方向?yàn)橹?如果最后得到的所有向量之和的模長(zhǎng)不小于原來(lái)每條線段長(zhǎng),則甲獲勝,否則乙獲勝.問(wèn):誰(shuí)有必勝策略?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)個(gè)子集滿足:(1)對(duì)任意的,恰有奇數(shù)個(gè)元素;(2)對(duì)任意的都有.(3),.試確定的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求最小的正整數(shù),使得存在一個(gè)的數(shù)陣滿足如下條件: (1)每一個(gè)數(shù)均屬于集合; (2)為數(shù)陣中第行中的數(shù)組成的集合, 為第列中的數(shù)組成的集合,,4026個(gè)不同的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案