【題目】中央電視臺為了解一檔詩歌類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:

其中一個數(shù)字被污損;

1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率;

2)隨著節(jié)目的播出,極大激發(fā)了觀眾對詩歌知識的學(xué)習(xí)積累熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學(xué)習(xí)詩歌知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示):

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡在60歲的觀眾周均學(xué)習(xí)詩歌知識的時間.

參考公式:,

【答案】1;(2;5.25小時

【解析】

1)求出基本事件的個數(shù),即可求出概率;

2)求出回歸系數(shù),可得回歸方程,再預(yù)測年齡為60歲觀眾周均學(xué)習(xí)詩歌知識的時間.

1)設(shè)被污損的數(shù)字為,則10種情況,令

則:,

所以東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)有8種情況,

其概率為.

2

時,小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14分

在數(shù)列中,,且.

() 求,猜想的表達式,并加以證明;

() 設(shè),求證:對任意的自然數(shù),都有;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)求函數(shù)的單調(diào)區(qū)間;

2)當時,對任意的,存在,使得成立,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題ABC的三個內(nèi)角構(gòu)成等差數(shù)列,則ABC必有一內(nèi)角為的否命題( )

A.與原命題真假相異B.與原命題真假相同

C.與原命題的逆否命題的真假不同D.與原命題的逆命題真假相異

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在拋物線上,點是拋物線的焦點,線段的中點為.

(1)若點的坐標為,且的垂心,求直線的方程;

(2)若點是直線上的動點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結(jié)束該局.

(1)若在一局中甲先摸,求甲在該局獲勝的概率;

(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)當時,證明:對

(2)若函數(shù)上存在極值,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了了解高三學(xué)生每天自主參加體育鍛煉的情況,隨機抽取了100名學(xué)生進行調(diào)查,其中女生有55.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生自主參加體育鍛煉時間的頻率分布直方圖:

將每天自主參加體育鍛煉時間不低于40分鐘的學(xué)生稱為體育健康A類學(xué)生,已知體育健康A類學(xué)生中有10名女生.

(Ⅰ)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否認為達到體育健康A類學(xué)生與性別有關(guān)?

非體育健康A類學(xué)生

體育健康A類學(xué)生

合計

男生

女生

合計

(Ⅱ)將每天自主參加體育鍛煉時間不低于50分鐘的學(xué)生稱為體育健康類學(xué)生,已知體育健康類學(xué)生中有2名女生,若從體育健康類學(xué)生中任意選取2人,求至少有1名女生的概率.

附:

P

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

同步練習(xí)冊答案