【題目】已知函數(shù)f(x)=lnx+bx﹣c,f(x)在點(diǎn)(1,f(1))處的切線方程為x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若在區(qū)間 內(nèi),恒有f(x)≥2lnx+kx成立,求k的取值范圍.
【答案】
(1)解:由題意,f′(x)= +b,則f′(1)=1+b,
∵在點(diǎn)(1,f(1))處的切線方程為x+y+4=0,
∴切線斜率為﹣1,則1+b=﹣1,得b=﹣2,
將(1,f(1))代入方程x+y+4=0,
得:1+f(1)+4=0,解得f(1)=﹣5,
∴f(1)=b﹣c=﹣5,將b=2代入得c=3,
故f(x)=lnx﹣2x﹣3
(2)解:依題意知函數(shù)的定義域是(0,+∞),且f′(x)= ﹣2,
令f′(x)>0得,0<x< ,令f′(x)<0得,x> ,
故f(x)的單調(diào)增區(qū)間為(0, ),單調(diào)減區(qū)間為( ,+∞)
(3)解:由f(x)≥2lnx+kx,k≤﹣2﹣ 在區(qū)間 內(nèi)恒成立,
設(shè)g(x)=﹣2﹣ ,則g′(x)= ,
∴g(x)在區(qū)間 上單調(diào)遞增,
∴g(x)的最小值為g( )=2ln2﹣8,
∴k≤2ln2﹣8
【解析】(1)由求導(dǎo)公式、法則求出f′(x),根據(jù)題意和導(dǎo)數(shù)的幾何意義求出b的值,將(1,f(1))代入方程x+y+4=0求出f(1),代入解析式列出方程求出c,即可求出函數(shù)f(x)的解析式;(2)由(1)求出函數(shù)的定義域和f′(x),求出f′(x)>0和f′(x)<0的解集,即可求出函數(shù)f(x)的單調(diào)區(qū)間;(3)由f(x)≥2lnx+kx,k≤﹣2﹣ 在區(qū)間 內(nèi)恒成立,求出右邊的最小值,即可得出結(jié)論.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn , an+1= ,若S3=10,則S180=( )
A.600或900
B.900或560
C.900
D.600
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) 的圖象向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則下列關(guān)于g(x)敘述正確的是( )
A.g(x)的最小正周期為2π
B.g(x)在 內(nèi)單調(diào)遞增
C.g(x)的圖象關(guān)于 對(duì)稱
D.g(x)的圖象關(guān)于 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2, ,E、F分別為AD、PC中點(diǎn).
(1)求點(diǎn)F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E﹣PC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考拉茲猜想又名3n+1猜想,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)關(guān)于的一元二次方程,若是從這四個(gè)數(shù)中任取的一個(gè)數(shù),是從這三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)根的概率.
(2)王小一和王小二約定周天下午在銀川大閱城四樓運(yùn)動(dòng)街區(qū)見面,約定5:00—6:00見面,先到的等另一人半小時(shí),沒來就可以先走了,假設(shè)他們?cè)谧约汗烙?jì)時(shí)間內(nèi)到達(dá)的可能性相等,求他們兩個(gè)能相遇的概率有多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com