定義在[0,2]上的函數(shù)f(x)=
-x2+2x,x∈[0,1]
log2x+1,x∈(1,2]
,若不等式[f(x)]2-af(x)+3>0恒成立,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專(zhuān)題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:先確定f(x)∈[0,2],再分類(lèi)討論,利用基本不等式,即可得出結(jié)論.
解答: 解:∵定義在[0,2]上的函數(shù)f(x)=
-x2+2x,x∈[0,1]
log2x+1,x∈(1,2]

∴函數(shù)在[0,2]上為增函數(shù),
∴f(x)∈[0,2].
f(x)=0時(shí),不等式[f(x)]2-af(x)+3=3>0恒成立;
f(x)≠0時(shí),f(x)>0,不等式[f(x)]2-af(x)+3>0可化為a<f(x)+
3
f(x)

∵f(x)+
3
f(x)
≥2
3
,當(dāng)且僅當(dāng)f(x)=
3
f(x)
,即f(x)=
3
時(shí)等號(hào)成立,
a<2
3

故答案為:a<2
3
點(diǎn)評(píng):本題考查分段函數(shù)的應(yīng)用,考查基本不等式的運(yùn)用,正確分離參數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(1-3a)x+10a   (x≤7)
loga(x-6)   (x>7)
是定義域上的減函數(shù),則a的取范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A=90°,sinB=
1
3
,則
c
2b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x3+x-3=2,則x+
1
x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F為橢圓
x2
16
+
y2
12
=1的右焦點(diǎn),A(-2,
3
)為一定點(diǎn),M為橢圓上一動(dòng)點(diǎn),則|MA|+|MF|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+1,x≥0
1,x<0
,則滿足不等式f(1)>f(2x)的x的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b滿足|a-2b+1|+
4a2-12ab+9b2
=0,函數(shù)y=x2+a+(-
b
x
) (1≤x≤2),則y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在[-4,4]上的偶函數(shù),且f(3)>f(1),則下列關(guān)系一定成立的是( 。
A、f(0)<f(4)
B、f(3)>f(2)
C、f(-1)<f(3)
D、f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=2x+5,以下說(shuō)法錯(cuò)誤的是( 。
A、若l1與l關(guān)于y軸對(duì)稱(chēng),則l1的方程為y=-2x+5
B、若l2與l關(guān)于x軸對(duì)稱(chēng),則l2的方程為y=-2x-5
C、若l3與l關(guān)于原點(diǎn)對(duì)稱(chēng),則l3的方程為y=2x-5
D、若l4與l關(guān)于y=x對(duì)稱(chēng),則l4的方程為x-2y+5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案