精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.
(1)若函數f(x)與g(x)的圖象的一個公共點恰好在x軸上,求a的值;
(2)若函數f(x)與g(x)圖象相交于不同的兩點A、B,O為坐標原點,試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應的a的值;如果沒有,請說明理由.
【答案】分析:(1)設函數g(x)圖象與x軸的交點坐標為(a,0),而點(a,0)也在函數f(x)的圖象上,代入函數f(x)的解析式建立等式,解之即可求出a的值;
(2)依題意,f(x)=g(x),函數f(x)與g(x)圖象相交于不同的兩點A、B,則△>0,求出a的范圍,設A(x1,y1),B(x2,y2),求出AB以及點O到直線g(x)=x-a的距離,從而求出三角形的面積關于a的函數,根據a的范圍求出面積的最值.
解答:解:(1)設函數g(x)圖象與x軸的交點坐標為(a,0),
又∵點(a,0)也在函數f(x)的圖象上,∴a3+a2=0.
而a≠0,∴a=-1.
(2)依題意,f(x)=g(x),即ax2+ax=x-a,
整理,得  ax2+(a-1)x+a=0,①
∵a≠0,函數f(x)與g(x)圖象相交于不同的兩點A、B,
∴△>0,即△=(a-1)2-4a2=-3a2-2a+1=(3a-1)(-a-1)>0.
∴-1<a<且a≠0.…(6分)
設A(x1,y1),B(x2,y2),且x1<x2,由①得,x1•x2=1>0,
設點O到直線g(x)=x-a的距離為d,

∴S△OAB=
=
∵-1<a<且a≠0,∴當時,S△OAB有最大值,S△OAB無最小值.
點評:本題主要考查了三角形面積的度量,以及利用二次函數研究函數的最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案