6.在區(qū)間[2,10]上任取一個數(shù),這個數(shù)在區(qū)間[5,7]上的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 由題意,本題符合幾何概型,只要求出對應(yīng)區(qū)間的長度,利用長度比得到概率值.

解答 解:由區(qū)間[2,10]的長度為8,區(qū)間[5,7]的長度為2,
則所求的概率為P=$\frac{2}{8}$=$\frac{1}{4}$.
故選:B.

點評 本題考查了幾何概型概率的計算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)變量x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}\right.$,若z=a2x+y(a>0)的最大值為4,則a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.雙曲線mx2-y2=1(m∈R)與橢圓$\frac{x^2}{5}+{y^2}=1$有相同的焦點,則該雙曲線的漸近線方程為(  )
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x-2a,x<2\\{log_a}x,x≥2\end{array}\right.$在R上單調(diào)遞減,則實數(shù)a的取值范圍是$[\frac{{\sqrt{2}}}{2},1)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{1+{x}^{2}}$的值域是(  )
A.{y|y≠0}B.(0,1]C.(0,1)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=(ax-1)ex,a∈R,e是自然對數(shù)底數(shù).
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若a>b>0,c<d<0,則一定有( 。
A.ad>bcB.ad<bcC.ac>bdD.ac<bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,則cos(π-2α)=(  )
A.$\frac{2}{9}$B.$\frac{5}{9}$C.$-\frac{2}{9}$D.$-\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,點E是PB的中點,點F在邊BC上移動.
(Ⅰ)若F為BC中點,求證:EF∥平面PAC;
(Ⅱ)求證:AE⊥PF;
(Ⅲ)若二面角E-AF-B的余弦值等于$\frac{\sqrt{11}}{11}$,求$\frac{BF}{BC}$的值.

查看答案和解析>>

同步練習冊答案