18.用數(shù)學(xué)歸納法證明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=$\frac{2n}{n+1}$時(shí),由n=k到n=k+1左邊需要添加的項(xiàng)是$\frac{2}{(k+1)(k+2)}$.

分析 n=k時(shí),左邊最后一項(xiàng)為$\frac{2}{k(k+1)}$,n=k+1時(shí),左邊最后一項(xiàng)為$\frac{2}{(k+1)(k+2)}$,由此即可得到結(jié)論

解答 解:∵n=k時(shí),左邊最后一項(xiàng)為$\frac{2}{k(k+1)}$,n=k+1時(shí),左邊最后一項(xiàng)為$\frac{2}{(k+1)(k+2)}$,
∴從n=k到n=k+1,不等式左邊需要添加的項(xiàng)為一項(xiàng)為$\frac{2}{(k+1)(k+2)}$,
故答案為:$\frac{2}{(k+1)(k+2)}$,

點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)y=$\sqrt{{{log}_{0.2}}x}$的定義域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在橢圓4x2+y2=4上任取一點(diǎn)P,設(shè)P在x軸上的正投影為點(diǎn)D,當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),動(dòng)點(diǎn)MM滿(mǎn)足$\overrightarrow{PD}$=2$\overrightarrow{MD}$,則動(dòng)點(diǎn)M的軌跡是(  )
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=2{sin^2}(\frac{π}{4}+x)-\sqrt{3}cos2x$.
(1)求f(x)的最小正周期;
(2)求f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最大值和最小值;
(3)若不等式|f(x)-m|<2在$x∈[{\frac{π}{4},\frac{π}{2}}]$上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個(gè)焦點(diǎn)與F1、F2,若P為其上一點(diǎn),則|PF1|=2|PF2|,則橢圓離心離的取值范圍為[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z=$\frac{a+i}{1-i}$(a∈R)是純虛數(shù),則實(shí)數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期為π.
(1)求ω的值;  
(2)討論f(x)在區(qū)間$[{0,\frac{5π}{6}}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.集合M={x|mx2+x+2=0,x∈R}中至多只有一個(gè)元素,則實(shí)數(shù)m的取值范圍是{m|m≥$\frac{1}{8}$,或m=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)點(diǎn)P(-2,2)且垂直于直線2x-y+1=0的直線方程為( 。
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

查看答案和解析>>

同步練習(xí)冊(cè)答案