已知函數(shù)在處的切線與軸平行.
(1)求的值和函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與拋物線恰有三個不同交點(diǎn),求的取值范圍.
(1);函數(shù)的單調(diào)遞增區(qū)間為;的單調(diào)遞減區(qū)間為;(2)的取值范圍.
【解析】
試題分析:(1)首先求函數(shù)的導(dǎo)數(shù),由已知條件函數(shù)在處的切線與軸平行,解方程可得的值;解不等式可得函數(shù)的單調(diào)遞增區(qū)間,解不等式可得函數(shù)的單調(diào)遞減區(qū)間為;(2) 令,則由題意等價于有三個不同的根,即的極小值為小于0,且的極大值為大于0.因此利用導(dǎo)數(shù)求函數(shù)的極大極小值,列不等式組并求解即得的取值范圍.
試題解析:(1) , (2分)
由,解得. (3分)
則,
故的單調(diào)遞增區(qū)間為;的單調(diào)遞減區(qū)間為.
(判斷過程給兩分) (7分)
(2)令, (8分)
則原題意等價于有三個不同的根.
∵, (9分)
∴在上遞增,在上遞減. (10分)
則的極小值為,且的極大值為,
解得. 的取值范圍. (13分)
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值;3.利用導(dǎo)數(shù)求參數(shù)的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011年湖南省校高二下學(xué)期1月份聯(lián)考數(shù)學(xué)文卷 題型:解答題
(本小題滿分13分)已知函數(shù)().
(1)若函數(shù)在處的切線與x軸平行,求a的值,并求出函數(shù)的極值;
(2)已知函數(shù),在(1)的條件下,若恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省長沙市高三第四次月考文科數(shù)學(xué)試卷 題型:解答題
(本小題滿分13分)已知函數(shù)().
(1)若函數(shù)在處的切線與x軸平行,求a的值,并求出函數(shù)的極值;
(2)已知函數(shù),在(1)的條件下,若恒成立,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com