9.已知tanθ=3,則cos($\frac{3π}{2}$+2θ)=( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,求得式子cos($\frac{3π}{2}$+2θ)的值.

解答 解:∵tanθ=3,則cos($\frac{3π}{2}$+2θ)=sin2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{6}{9+1}$=$\frac{3}{5}$,
故選:C.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)直線m,n是兩條不同的直線,α,β是兩個不同的平面,下列事件中是必然事件的是( 。
A.若m∥α,n∥β,m⊥n,則α⊥βB.若m∥α,n⊥β,m∥n,則α∥β
C.若m⊥α,n∥β,m⊥n,則α∥βD.若m⊥α,n⊥β,m∥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一種在實數(shù)域和復(fù)數(shù)域上近似求解方程的方法可以設(shè)計如圖所示的程序框圖,若輸入的n=12,則輸出的結(jié)果b=(  )
A.4B.$\frac{7}{2}$C.$\frac{97}{28}$D.$\frac{64}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{1+lnx}{x}$,若關(guān)于x的不等式f2(x)+af(x)>0恰有兩個整數(shù)解,則實數(shù)a的取值范圍是(  )
A.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$)B.[$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$)C.(-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$]D.(-1,-$\frac{1+ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2|x-1|-a,g(x)=-|x+m|(a,m∈R),若關(guān)于x的不等式g(x)>-1的整數(shù)解有且僅有一個值為-3.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若函數(shù)y=f(x)的圖象恒在函數(shù)y=g(x)的圖象上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{1-{x}^{3},x≤1}\end{array}\right.$,若函數(shù)y=f(x)-a(x-1)恰有三個零點,則實數(shù)a的取值范圍是(  )
A.(-$\frac{3}{4}$,0)B.(-∞,-$\frac{3}{4}$)C.(-3,-$\frac{3}{4}$)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點分別為F1,F(xiàn)2,過F1作x軸的垂線交雙曲線于A,B兩點,若$∠A{F_2}B<\frac{π}{3}$,則雙曲線離心率的取值范圍是(  )
A.$({1,\sqrt{3}})$B.$({1,\sqrt{6}})$C.$({1,2\sqrt{3}})$D.$({\sqrt{3},3\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,Sn為其前n項和,若a3+a4+a8=25,則S9=( 。
A.60B.75C.90D.105

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在極坐標(biāo)系下,點P是曲線ρ=2(0<θ<π)上的動點,A(2,0),線段AP的中點為Q,以極點為原點,極軸為x軸正半軸建立平面直角坐標(biāo)系.
(1)求點Q的軌跡C的直角坐標(biāo)方程;
(2)若軌跡C上的點M處的切線斜率的取值范圍是[-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$],求點M橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案