已知函數(shù),設(shè)曲線在與軸交點處的切線為,為的導(dǎo)函數(shù),滿足.
(1)求;
(2)設(shè),,求函數(shù)在上的最大值;
(3)設(shè),若對于一切,不等式恒成立,求實數(shù)的取值范圍.
(1);(2);(3).
解析試題分析:(1)三次函數(shù)的導(dǎo)數(shù)是二次函數(shù),由,知其對稱軸,曲線的切線問題,可利用導(dǎo)數(shù)的幾何意義(切點處切線的斜率)列出方程組求解;(2),畫出函數(shù)圖象考察其單調(diào)性,根據(jù)其單調(diào)區(qū)間對的值分類討論求出其最大值;(3)對不等式進行化簡,得恒成立,即,且,對任意的成立,然后又轉(zhuǎn)化為求函數(shù)的最值問題,要注意,從而有.
試題解析:(1),∵,
∴函數(shù)的圖象關(guān)于直線對稱,, 2分
∵曲線在與軸交點處的切線為,∴切點為,
∴,解得,則 5分
(2)∵,
∴,其圖象如圖 7分
當(dāng)時,,
當(dāng)時,,
當(dāng)時,,
綜上 10分
(3),,
當(dāng)時,,所以不等式等價于恒成立,
解得,且, 13分
由,得,,所以,
又,∵,∴所求的實數(shù)的的取值范圍是 16分
考點:函數(shù)與導(dǎo)數(shù)、曲線的切線、不等式恒成立問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),的圖象經(jīng)過和兩點,如圖所示,且函數(shù)的值域為.過該函數(shù)圖象上的動點作軸的垂線,垂足為,連接.
(I)求函數(shù)的解析式;
(Ⅱ)記的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥2時,討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意及任意,∈[1,2],恒有成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對任意都有,求的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時,不等式恒成立,求實數(shù)的取值范圍,并且判斷代數(shù)式的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)若時,求函數(shù)在點處的切線方程;
(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(3)令是否存在實數(shù),當(dāng)是自然對數(shù)的底)時,函數(shù)的最小值是3,
若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時,函數(shù)在上有且只有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點處的切線互相平行.
(1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com