已知函數(shù),為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對(duì)任意都有,求的的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ) 利用導(dǎo)數(shù)求解單調(diào)區(qū)間,導(dǎo)數(shù)大于零,原函數(shù)單調(diào)遞增,然后解不等式;(Ⅱ)利用導(dǎo)數(shù)研究單調(diào)性,進(jìn)而求最值.
試題解析:(Ⅰ),
,令,得,或, 
∴函數(shù)的單調(diào)增區(qū)間為.
(Ⅱ) ∵,∴,∴
設(shè),   依題意上是減函數(shù).
當(dāng)時(shí), ,,
,得:對(duì)恒成立,
設(shè),則
,∴
上是增函數(shù),則當(dāng)時(shí),有最大值為,∴. 10分
當(dāng)時(shí), ,,
,得: ,
設(shè),則,
上是增函數(shù),  ∴,     ∴
綜上所述,.
考點(diǎn):導(dǎo)數(shù),函數(shù)的單調(diào)性,不等式證明等知識(shí)點(diǎn),考查學(xué)生的綜合處理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的極值點(diǎn);
(2)若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;
(3)設(shè)函數(shù),其中,求函數(shù)上的最小值(其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線是 
(Ⅰ)求,的值;
(Ⅱ)若上單調(diào)遞增,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分共12分)已知函數(shù),曲線在點(diǎn)處切線方程為。
(Ⅰ)求的值;
(Ⅱ)討論的單調(diào)性,并求的極大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為的導(dǎo)函數(shù),滿足
(1)求
(2)設(shè),,求函數(shù)上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若對(duì)任意,使得恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:對(duì),不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
(Ⅰ)設(shè),求證:當(dāng)時(shí),;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)的定義域?yàn)椋?,).
(Ⅰ)求函數(shù)上的最小值;
(Ⅱ)設(shè)函數(shù),如果,且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案