函數(shù)的部分圖象如圖所示,則=( )

A.4
B.6
C.1
D.2
【答案】分析:先利用正切函數(shù)求出A,B兩點的坐標(biāo),進(jìn)而求出的坐標(biāo),再代入平面向量數(shù)量積的運算公式即可求解.
解答:解:因為y=tan(x-)=0⇒x-=kπ⇒x=4k+2,由圖得x=2;故A(2,0)
由y=tan(x)=1⇒x-=k⇒x=4k+3,由圖得x=3,故B(3,1)
所以=(5,1),=(1,1).
∴(=5×1+1×1=6.
故選  B.
點評:本題主要考查平面向量數(shù)量積的運算,考查的是基礎(chǔ)知識,屬于基礎(chǔ)題.解決本題的關(guān)鍵在于利用正切函數(shù)求出A,B兩點的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則f(1)的值為( 。
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x<0時,函數(shù)的部分圖象如圖所示,則不等式xf(x)<0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點A、B分別為該部分圖象的最高點與最低點,且這兩點間的距離為4
2
,則函數(shù)f(x)圖象的一條對稱軸的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長1為的等邊三角形,則f(1)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(ωx+?)(ω>0,0<?<π)為偶函數(shù),該函數(shù)的部分圖象如圖所示,A、B分別為最高點與最低點,并且|AB|=2
2
,則該函數(shù)圖象的一條對稱軸方程為(  )

查看答案和解析>>

同步練習(xí)冊答案