分析 利用兩角和的正弦化積,然后根據(jù)x的范圍求出相位的范圍,則函數(shù)y=sinx+cosx的最大值、最小值可求.
解答 解:y=sin($\frac{π}{2}$-x)+sin(π-x)=sinx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)
=$\sqrt{2}$sin(x+$\frac{π}{4}$).
∵0≤x≤π,
∴$\frac{π}{4}$≤x+$\frac{π}{4}$≤$\frac{5π}{4}$,
則-$\frac{\sqrt{2}}{2}$≤sin(x+$\frac{π}{4}$)≤1,
∴當(dāng)x∈[0,π]時,函數(shù)y=sin($\frac{π}{2}$-x)+sin(π-x)最大值與最小值的積是:$-\frac{\sqrt{2}}{2}$.
故答案為:-$\frac{\sqrt{2}}{2}$.
點評 本題考查三角函數(shù)的化簡求值,考查了兩角和的正弦,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (2,6) | C. | (0,6) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7+2$\sqrt{6}$ | B. | $\frac{7}{2}$+$\sqrt{6}$ | C. | 5$+2\sqrt{6}$ | D. | $\frac{5}{2}+\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+$\frac{{y}^{2}}{2}$=1 | B. | x2+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{2}$+y2=1 | D. | $\frac{{x}^{2}}{4}$+y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $2\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com