如圖,在中,,,點(diǎn)在邊上,設(shè),過(guò)點(diǎn),作。沿翻折成使平面平面;沿翻折成使平面平面

(1)求證:平面;
(2)是否存在正實(shí)數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

(1)證明見(jiàn)詳解;(2)不存在,理由見(jiàn)解析.

解析試題分析:(1)以為坐標(biāo)原點(diǎn),以、分別為軸、軸建立空間直角坐標(biāo)系,然后通過(guò)證明向量與平面平面的法向量垂直;本小題也可考慮通過(guò)證明平面平面來(lái)證明;(2)由條件知二面角為直二面角,因此可通過(guò)兩個(gè)半平面的法向量互相垂直,即其數(shù)量積為通過(guò)建立方程來(lái)解決.
試題解析:(1)法一:以為原點(diǎn),所在直線為軸,所在直線為軸,過(guò)且垂直于平面的直線為軸,建立空間直角坐標(biāo)系,如圖,

設(shè)
,
從而于是,
平面的一個(gè)法向量為
,,從而平面
法二:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f5/8/slaqp1.png" style="vertical-align:middle;" />,平面,所以平面,因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/a7/f/1ya1a3.png" style="vertical-align:middle;" />平面,且,所以平面.同理,平面,所以,從而平面.所以平面平面,從而平面
(2)解:由(1)中解法一有:,
。可求得平面的一個(gè)法向量,平面的一個(gè)法向量,由,即,又,由于
所以不存在正實(shí)數(shù),使得二面角的大小為
考點(diǎn):1、空間向量的應(yīng)用;2、面角;3、直線、平面的平行關(guān)系;4、探索性問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖, 已知四邊形ABCDBCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFG,BAAC,EDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱ABCA1B1C1中,D,E分別是ABBB1的中點(diǎn),AA1ACCBAB.
 
(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,ABCD是塊矩形硬紙板,其中AB=2AD,ADEDC的中點(diǎn),將它沿AE折成直二面角D-AE-B.

(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在矩形ABCD中,AB=2AD=2,OCD的中點(diǎn),沿AO將△AOD折起,使DB.

(1)求證:平面AOD⊥平面ABCO;
(2)求直線BC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等腰梯形ABCD中,ADBC,ADBC,∠ABC=60°,NBC的中點(diǎn),將梯形ABCDAB旋轉(zhuǎn)90°,得到梯形ABCD′(如圖).

(1)求證:AC⊥平面ABC′;
(2)求證:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P—ABCD中,為邊長(zhǎng)為2的正三角形,底面ABCD為菱形,且平面PAB⊥平面ABCD,,E為PD點(diǎn)上一點(diǎn),滿足

(1)證明:平面ACE平面ABCD;
(2)求直線PD與平面ACE所成角正弦值的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案