分析 由題意畫出圖形,建立如圖所示空間直角坐標系,求出$\overrightarrow{AC}、\overrightarrow{D{B}_{1}}$所成角的余弦值的絕對值得答案.
解答 解:如圖,建立空間直角坐標系,
∵AB=AA1=1,BC=2,
∴D(0,0,0),A(2,0,0),C(0,1,0),B1(2,1,1).
則$\overrightarrow{AC}=(-2,1,0),\overrightarrow{D{B}_{1}}=(2,1,1)$,
∴異面直線AC與DB1所成角的余弦值cosθ=|$\frac{\overrightarrow{AC}•\overrightarrow{D{B}_{1}}}{|\overrightarrow{AC}||\overrightarrow{D{B}_{1}}|}$|=|$\frac{-4+1}{\sqrt{5}×\sqrt{6}}$|=$\frac{\sqrt{30}}{10}$.
∴異面直線AC與DB1所成角的大小為arccos$\frac{\sqrt{30}}{10}$.
故答案為:arccos$\frac{\sqrt{30}}{10}$.
點評 本題考查異面直線所成的角,考查了利用空間向量求異面直線所成角,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m⊆A | B. | m∉A | C. | {m}∈A | D. | m∈A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com